Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery

Abstract

It is particularly desirable to fabricate highly tough hydrogels with excellent self-recoverable properties for applications where high stress is required. In this work, we prepared a tough, fast self-recoverable nanocomposite hydrogel by chemical cross-linking of acrylamide (AM) monomers with vinyl-modified silica nanoparticles (VSNPs), combined with physical cross-linking of polyvinyl alcohol (PVA). The uniaxial tensile test showed that the nanocomposite hydrogel has excellent mechanical properties. The maximum elongation at break was as high as 666%, and the tensile strength was as high as 1.68 MPa. Cyclic loading-unloading tests revealed the excellent self-healing properties of the nanocomposite hydrogel. It is worth noting that the nanocomposite hydrogel exhibited higher strength after two loading-unloading cycles, due to the orientation of the PVA when stretched. In addition, the effects of PVA, VSNPs, and AM concentrations, and the number of PVA freeze-thaw cycles and freezing duration on the mechanical properties of the hydrogels were investigated in detail.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

References

  1. 1.

    Chang G, Chen Y, Li Y, Li S, Huang F, Shen Y, Xie A (2015) Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy. Carbohydr Polym 122:336–342

    CAS  PubMed  Google Scholar 

  2. 2.

    Chen C, Zhang T, Dai B, Zhang H, Chen X, Yang J, Liu J, Sun D (2016) Rapid fabrication of composite hydrogel microfibers for weavable and sustainable antibacterial applications. ACS Sustain Chem Eng 4:6534–6542

    CAS  Google Scholar 

  3. 3.

    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    CAS  PubMed  Google Scholar 

  4. 4.

    Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214

    CAS  PubMed  Google Scholar 

  5. 5.

    Hu J, Kurokawa T, Hiwatashi TK, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228

    CAS  Google Scholar 

  6. 6.

    Hu J, Hiwatashi K, Kurokawa T, Liang SM, Wu ZL, Gong JP (2011) Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure. Macromolecules 44:7775–7781

    CAS  Google Scholar 

  7. 7.

    Gao GR, Du GL, Cheng YJ, Fu J (2014) Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. J Mater Chem B 2:1539–1549

    CAS  PubMed  Google Scholar 

  8. 8.

    Aranaz I, Martínez-Campos E, Nash ME, Tardajos MG, Reinecke H, Elvira C, Ramos V, López-Lacomba JL, Gallardo A (2014) Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J Mater Chem B 2:3839–3848

    CAS  PubMed  Google Scholar 

  9. 9.

    Yin HY, Akasaki T, Sun TL, Nakajima T, Kurokawa T, Nonoyama T, Taira T, Saruwatari Y, Gong JP (2013) Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 1:3685–3693

    CAS  PubMed  Google Scholar 

  10. 10.

    Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:489–499

    CAS  Google Scholar 

  11. 11.

    Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    CAS  Google Scholar 

  12. 12.

    Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27:1023–1028

    CAS  Google Scholar 

  13. 13.

    Kostina NY, Sharifi S, Pereira AS, Michálek J, Grijpma DW, Rodriguez-Emmenegger C (2013) Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J Mater Chem B 1:5644–5650

    CAS  PubMed  Google Scholar 

  14. 14.

    Li ZY, Su YL, Xie BQ, Wang HL, Wen T, He CC, Shen H, Wu DC, Wang DJ (2013) A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li JY, Suo ZG, Vlassak JJ (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2:6708–6713

    PubMed  Google Scholar 

  17. 17.

    Yang YY, Wang X, Yang F, Shen H, Wu DC (2016) A universal strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater 28:7178–7184

    CAS  PubMed  Google Scholar 

  18. 18.

    Zhang HJ, Cheng YR, Hou XJ, Yang B, Guo F (2018) Ionic effects on the mechanical and swelling properties of a poly(acrylic acid/acrylamide) double crosslinking hydrogel. New J Chem 42:9151–9158

    CAS  Google Scholar 

  19. 19.

    Kong WQ, Wang CW, Jia C, Kuang YD, Pastel G, Chen CJ, Chen G, He SM, Huang H, Zhang JH, Wang S, Hu LB (2018) Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv Mater 30: 1801934

  20. 20.

    Peak CW, Wilker JJ, Schmidt G (2013) Review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047

    CAS  Google Scholar 

  21. 21.

    Duan JJ, Zhang LN (2017) Robust and smart hydrogels based on natural polymers. Chin J Polym Sci 35:1165–1180

    CAS  Google Scholar 

  22. 22.

    Fan HL, Wang JH, Jin ZX (2018) Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer−tannic acid multiple hydrogen bonds. Macromolecules 51:1696–1705

    CAS  Google Scholar 

  23. 23.

    Yao C, Liu Z, Yang C, Wang W, Ju XJ, Xie R, Chu LY (2015) Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators. Adv Funct Mater 25:2980–2991

    CAS  Google Scholar 

  24. 24.

    Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241

    CAS  Google Scholar 

  25. 25.

    Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49:5064–5071

    CAS  Google Scholar 

  26. 26.

    Su X, Chen BQ (2018) Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydr Polym 197:497–507

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu RQ, Liang SM, Tang XZ, Yan D, Li XF, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    CAS  Google Scholar 

  28. 28.

    Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34:1002–1007

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhang HJ, Zhai DD, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv 4:44600–44609

    CAS  Google Scholar 

  30. 30.

    Lin WC, Fan W, Marcellan A, Hourdet D, Creton C (2010) Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43(5):2554–2563

    CAS  Google Scholar 

  31. 31.

    Shi FK, Wang XP, Guo RH, Zhong M, Xie XM (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3:1187–1192

    CAS  PubMed  Google Scholar 

  32. 32.

    Zhong M, Liu XY, Shi FK, Zhang LQ, Wang XP, Cheetham AG, Cui HG, Xie XM (2015) Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter 11:4235–4241

    CAS  PubMed  Google Scholar 

  33. 33.

    Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinylalcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang Z, Tao F, Pan Q (2016) A self-healable polyvinyl alcoholbased hydrogel electrolyte for smart electrochemical capacitors. J Mater Chem A 4:17732–17739

    CAS  Google Scholar 

  35. 35.

    Liu K, Pan XF, Chen LH, Huang LL, Ni YH, Liu J, Cao SL, Wang HP (2018) Ultrasoft self-healing nanoparticle-hydrogel composites with conductive and magnetic properties. ACS Sustain Chem Eng 6:6395–6403

    CAS  Google Scholar 

  36. 36.

    Ou KK, Dong X, Qin CL, Ji XN, He JX (2017) Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater Sci Eng C 77:1017–1026

    CAS  Google Scholar 

  37. 37.

    Fernández E, López D, López-Cabarcos E, Mijangos C (2005) Viscoelastic and swelling properties of glucose oxidase loaded polyacrylamide hydrogels and the evaluation of their properties as glucose sensors. Polymer 7:2211–2217

    Google Scholar 

  38. 38.

    Yao W, Geng C, Han D, Chen F, Fu Q (2014) Strong and conductive double-network graphene/PVA gel. RSC Adv 74:39588–39595

    Google Scholar 

  39. 39.

    Chu L, Liu C, Zhou G, Xu R, Tang YH, Zeng ZB, Luo SL (2015) A double network gel as low cost and easy recycle adsorbent: highly efficient removal of Cd (II) and Pb (II) pollutants from wastewater. J Hazard Mater 300:153–160

    CAS  PubMed  Google Scholar 

  40. 40.

    Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK (2009) Poly (vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30:589–596

    CAS  PubMed  Google Scholar 

  41. 41.

    Park KR, Nho YC (2003) Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties. Radiat Phys Chem 67:361–365

    CAS  Google Scholar 

  42. 42.

    Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    CAS  Google Scholar 

  43. 43.

    Liu Y, Vrana N, Cahill P, Mcguinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90:492–502

    CAS  PubMed  Google Scholar 

  44. 44.

    Hatakeyema T, Uno J, Yamada C, Kishi A, Hatakeyama H (2005) Gel-sol transition of poly(vinyl alcohol) hydrogels formed by freezing and thawing. Thermochim Acta 431:144–148

    CAS  Google Scholar 

  45. 45.

    Lu X, Hu CX, Zhang YL, Wang XD, Shi LY, Ran R (2019) A mechanically robust double-network hydrogel with high thermal responses via doping hydroxylated boron nitride nanosheets. J Mater Sci 54:3368–3382

    Google Scholar 

  46. 46.

    Zhou Y, Wan CJ, Yang YS, Yang H, Wang SC, Dai ZD, Ji KJ, Jiang H, Chen XD, Long Y (2019) Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 29:1806220

    Google Scholar 

  47. 47.

    Shih CC, Wu M, Hsu SN, Huang CW, Hsu LC, Lam JY, Chen WC (2018) A robust, air-stable and recyclable hydrogel toward stretchable electronic device applications, 303: 1800282

  48. 48.

    Wang S, Zhang Z, Chen B, Shao J, Guo ZY (2018) Self-healing hydrogel of poly(vinyl alcohol)/graphite oxide with pH-sensitive and enhanced thermal properties. J Appl Polym Sci 135:46143

    Google Scholar 

  49. 49.

    Hu ZQ, Chen GM (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26:5950–5956

    CAS  PubMed  Google Scholar 

  50. 50.

    Gong ZY, Zhang GP, Zeng XL, Li JH, Li G, Huang WP, Sun R, Wong CP (2016) High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl Mater Interfaces 8:24030–24037

    CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge financial support from the National Nature Science Foundation of China (No. 21104040, 51473007, 31570575).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Huijuan Zhang or Biao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, X., Huang, H. et al. Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery. Colloid Polym Sci 297, 821–830 (2019). https://doi.org/10.1007/s00396-019-04512-7

Download citation

Keywords

  • PVA
  • Nanocomposite interpenetrating hydrogel
  • Toughness
  • Self-recovery
  • Draw-induced strengthening