Fabrication of carboxyl-functionalized polymer microtubes via RAFT copolymerization of diurea-type xerogel fibers and acrylic acid


A new diurea-type gelator was synthesized from 2-isocyanoethyl acrylate and 4′-diaminodiphenylmethane, which formed supramolecular gel in acetonitrile driven by hydrogen bonds. The xerogel fibers with a smooth lamellar structure were used as templates and monomer source in fabricating polymer microtubes via reversible addition-fragmentation chain transfer polymerization. Because of a very low solubility of the gelator, the polymerization in toluene gave no insoluble product. As suitable amount of methanol was used together with toluene, the polymerization was conducted successfully to obtain ribbon-like polymer tubes with smooth surface. Based on which, acrylic acid was further used as a co-monomer to form carboxyl-functionalized polymer tubes. The resulting products were characterized by multiple techniques. Compared with the ordinary polymer tubes, the carboxyl-functionalized polymer tubes exhibited much improved adsorption capability for methylene blue (MB) at pH 7 and the absorbed MB molecules could be released in both acidic water and acidic ethanol.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Savariar EN, Krishnamoorthy K, Thayumanavan S (2008) Molecular discrimination inside polymer nanotubules. Nat Nanotechnol 3:112–117

    CAS  Article  Google Scholar 

  2. 2.

    Cho SI, Lee SB (2008) Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Acc Chem Res 41:699–707

    CAS  Article  Google Scholar 

  3. 3.

    Ko S, Jang J (2006) A highly efficient palladium nanocatalyst anchored on a magnetically functionalized polymer-nanotube support. Angew Chem Int Ed 45:7564–7567

    CAS  Article  Google Scholar 

  4. 4.

    Stewart S, Liu G (2000) Block copolymer nanotubes. Angew Chem Int Ed 39:340–344

    CAS  Article  Google Scholar 

  5. 5.

    Martin CR, Van Dyke LS, Cai Z et al (1990) Template synthesis of organic microtubules. J Am Chem Soc 112:8976–8977

    CAS  Article  Google Scholar 

  6. 6.

    Moghe A, Gupta B (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48:353–377

    CAS  Article  Google Scholar 

  7. 7.

    Hamley IW (2005) Nanoshells and nanotubes from block copolymers. Soft Matter 1:36–43

    CAS  Article  Google Scholar 

  8. 8.

    Massuyeau F, Duvail J, Athalin H et al (2009) Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties. Nanotechnology 20:155701

    CAS  Article  Google Scholar 

  9. 9.

    Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11

    CAS  Article  Google Scholar 

  10. 10.

    Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12:637–640

    CAS  Article  Google Scholar 

  11. 11.

    Jang J, Yoon H (2005) Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir 21:11484–11489

    CAS  Article  Google Scholar 

  12. 12.

    Jung JH, Kobayashi H, van Bommel KJ et al (2002) Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater 14:1445–1447

    CAS  Article  Google Scholar 

  13. 13.

    George M, Weiss RG (2006) Molecular organogels soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39:489–497

    CAS  Article  Google Scholar 

  14. 14.

    Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    CAS  Article  Google Scholar 

  15. 15.

    Liu MH, Ouyang GH, Niu D, Sang YT (2018) Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 5:2885–2900

    CAS  Article  Google Scholar 

  16. 16.

    Wang YJ, Tang LM, Yu J (2008) Investigation on the assembled structure–property correlation of supramolecular hydrogel formed from low-molecular-weight gelator. J Colloid Interface Sci 319:357–364

    CAS  Article  Google Scholar 

  17. 17.

    Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45:4226–4251

    CAS  Article  Google Scholar 

  18. 18.

    Van Bommel KJC, Friggeri A, Shikai S (2003) Organic templates for the generation of inorganic materials. Angew Chem Int Ed 42:980–999

    Article  Google Scholar 

  19. 19.

    Llusar M, Roux C, Pozzo JL, Sanchez C (2003) Design of organically functionalised hybrid silica fibres through the use of anthracenic organogelators. J Mater Chem 13:442–444

    CAS  Article  Google Scholar 

  20. 20.

    Xia Y, Wang Y, Chen K et al (2008) A facile approach to fabricate functional 3D macroscopic silica microtube networks using N, N’-methylenediacrylamide organogel as template. Chem Commun 41:5113–5115

    Article  Google Scholar 

  21. 21.

    Dautel OJ, Robitzer M, Lère-Porte JP, Serein-Spirau F, Moreau JJE (2006) Self-organized ureido substituted diacetylenic organogel photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers. J Am Chem Soc 128:16213–16223

    CAS  Article  Google Scholar 

  22. 22.

    Wang GJ, Hamilton AD (2002) Synthesis and self-assembling properties of polymerizable organogelators. Chem Eur J 8:1954–1961

    CAS  Article  Google Scholar 

  23. 23.

    Chen K, Tang LM, Xia Y et al (2008) Silver(I)-coordinated organogel-templated fabrication of 3D networks of polymer nanotubes. Langmuir 24:13838–13841

    CAS  Article  Google Scholar 

  24. 24.

    Li Q, Tang LM, Xia Y et al (2013) Direct transformation of N,N’-methylene bisacrylamide self-assembled fibers into polymer microtubes via RAFT polymerization. Macromol Rapid Commun 34:185–189

    Article  Google Scholar 

  25. 25.

    Li Q, Tang LM (2014) One-step synthesis of polymer micro-tubes tethered by polymer nanowire networks via RAFT polymerization of N,N’-methylene bisacrylamide xerogel fibers in toluene and ethanol mixed solution. J Polym Sci A Polym Chem 52:1862–1868

    CAS  Article  Google Scholar 

  26. 26.

    Zhang YQ, Li BT, Tang LM (2017) Fabrication of functional macroscopic polymer microtubes from N, N-methylene bisacrylamide crystals and their adsorption for Cr(VI). Desalin Water Treat 74:237–247

    CAS  Article  Google Scholar 

  27. 27.

    De Loos M, van Esch J, Kellogg RM, Feringa BL (2001) Chiral recognition in bis-urea-based aggregates and organogels through cooperative interactions. Angew Chem Int Ed 40:613–616

    Article  Google Scholar 

  28. 28.

    Mutoh K, Abe J (2011) Photochromism of a water-soluble vesicular [2,2] paracyclophane-bridged imidazole dimer. Chem Commun 47:8868–8870

    CAS  Article  Google Scholar 

  29. 29.

    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    CAS  Article  Google Scholar 

  30. 30.

    Wen X, Tang LM (2015) One-dimensional copolymer nanostructures loaded with silver nanoparticles fabricated via metallogel template copolymerization and their pH dependent photocatalytic degradation of methylene blue. J Mol Catal A Chem 399:86–96

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (21574074), the National Basic Research Program of China (973 Plan, 2014CB932202), and the Fund of the Key Laboratory of Advanced Materials of Ministry of Education (2017AML08).

Author information



Corresponding author

Correspondence to Liming Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1260 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guan, W. & Tang, L. Fabrication of carboxyl-functionalized polymer microtubes via RAFT copolymerization of diurea-type xerogel fibers and acrylic acid. Colloid Polym Sci 297, 871–882 (2019). https://doi.org/10.1007/s00396-019-04508-3

Download citation


  • Supramolecular gel
  • RAFT polymerization
  • Template
  • Carboxyl-functionalized polymer microtubes