Fabrication of polystyrene-encapsulated magnetic iron oxide nanoparticles via batch and microfluidic-assisted production


The magnetic properties of nanoparticles make them ideal for use in various applications, especially in biomedical applications. Herein, we describe the fabrication of iron oxide nanoparticles encapsulated in polystyrene (PS) using two methods: a conventional batch and microfluidic synthesis. In particular, we present a simple synthesis method of magnetic composite nanoparticles, based on the use of a microfluidic elongational flow method in a continuous-flow apparatus where magnetite particles are embedded in a polystyrene matrix. Compared to conventional batch synthesis, microfluidics-based synthesis enables precise reaction control, enhanced mixing and rapid chemical reactions, allowing flow synthesis of particles in a controllable, sustainable, and cost-saving manner that is attractive to industry. The composite particles show a high encapsulation of magnetite nanoparticles, but with an inhomogeneous size distribution; instead, the sample obtained with microfluidic approach shows a homogenous composite particle size distribution although the magnetite content is lower compared to the miniemulsion batch methods.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Shalin RE (1995) Polymer matrix composites. Springer Science & Business Media, p 440

  2. 2.

    Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. Wiley Online Library

  3. 3.

    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials (Basel) 3(6):3468–3517

    CAS  PubMed Central  Article  Google Scholar 

  4. 4.

    Landfester K, Ramirez LP (2003) Encapsulated magnetite particles for biomedical application. J Phys Condens Matter 15(15):S1345–S1361

    CAS  Article  Google Scholar 

  5. 5.

    Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed Engl 50(7):1492–1522

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Ge J, Hu Y, Yin Y (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem 119(39):7572–7575

    Article  Google Scholar 

  7. 7.

    Xu X, Friedman G, Humfeld KD, Majetich SA, Asher SA (2002) Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem Mater 14(3):1249–1256, 2002

    CAS  Article  Google Scholar 

  8. 8.

    Ge J, Hu Y, Zhang T, Huynh T, Yin Y (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. 15:3671–3680

  9. 9.

    Liu X, Guan Y, Ma Z, Liu H (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20(23):10278–10282

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Teo BM, Chen F, Hatton TA, Grieser F, Ashokkumar M (2009) Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation. Langmuir 25(5):2593–2595

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Joumaa N, Toussay P, Lansalot M, Elaissari A (2008) Surface modification of iron oxide nanoparticles by a phosphate-based macromonomer and further encapsulation into submicrometer polystyrene particles by miniemulsion polymerization. J Polym Sci A Polym Chem 46(1):327–340

    CAS  Article  Google Scholar 

  12. 12.

    Joumaa N, Lansalot M, Théretz A, Elaissari A, Sukhanova A, Artemyev M, Nabiev I, Cohen JHM (2006) Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir 22(4):1810–1816

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Molday RS (1984) Magnetic iron-dextran microspheres. US4452773A Google Patents

  14. 14.

    Suzuki M, Shinkai M, Kamihira M, Kobayashi T (1995) Preparation and characteristics of magnetite-labelled antibody with the use of poly (ethylene glycol) derivatives. Biotechnol Appl Biochem 21(3):335–345

    CAS  PubMed  Google Scholar 

  15. 15.

    Dumazet-Bonnamour I, Le Perchec P (2000) Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene di-phosphonates. Colloids Surf A Physicochem Eng Asp 173(1):61–71

    CAS  Article  Google Scholar 

  16. 16.

    Montagne F, Mondain-Monval O, Pichot C, Mozzanega H, Elaıssari A (2002) Preparation and characterization of narrow sized (o/w) magnetic emulsion. J Magn Magn Mater 250:302–312

    CAS  Article  Google Scholar 

  17. 17.

    Montagne F, Mondain-Monval O, Pichot C, Elaïssari A (2006) Highly magnetic latexes from submicrometer oil in water ferrofluid emulsions. J Polym Sci A Polym Chem 44(8):2642–2656

    CAS  Article  Google Scholar 

  18. 18.

    Lan F, Liu K-X, Jiang W, Zeng X-B, Wu Y, Gu Z-W (2011) Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization. Nanotechnology 22(22):225604

    PubMed  Article  Google Scholar 

  19. 19.

    Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277(9):846–855

    CAS  Article  Google Scholar 

  20. 20.

    Remington JP, Troy DB, Beringer P (2006) Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins

  21. 21.

    Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22(12):896–936

    Article  Google Scholar 

  22. 22.

    Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18(41):R635–R666

    CAS  Article  Google Scholar 

  23. 23.

    Souilem I, Muller R, Holl Y, Bouquey M, Serra CA, Vandamme T, Anton N (2012) A novel low-pressure device for production of nanoemulsions. Chem Eng Technol 35(9):1692–1698

    CAS  Article  Google Scholar 

  24. 24.

    Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14(3–6):225–277

    CAS  Article  Google Scholar 

  25. 25.

    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31(8):1099–1115

    CAS  Article  Google Scholar 

  27. 27.

    Subramaniam AB, Abkarian M, Stone HA (2005) Controlled assembly of jammed colloidal shells on fluid droplets. Nat Mater 4(7):553–556

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ (2004) Hydrodynamic microfabrication via ‘on the fly’ photopolymerization of microscale fibers and tubes. Lab Chip 4(6):576–580

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ding S. et al (2018) Microfluidic-assisted production of size-controlled SPIONs-loaded PMMA nanohybrids. Langmuir

  31. 31.

    Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336

    CAS  Article  Google Scholar 

  32. 32.

    De Geest BG, Urbanski JP, Thorsen T, Demeester J, De Smedt SC (2005) Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 21(23):10275–10279

    PubMed  Article  Google Scholar 

  33. 33.

    Seo M, Nie Z, Xu S, Lewis PC, Kumacheva E (2005) Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir 21(11):4773–4775

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Jeong WJ, Kim JY, Choo J, Lee EK, Han CS, Beebe DJ, Seong GH, Lee SH (2005) Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21(9):3738–3741

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA (2006) Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir 22(21):8618–8622

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Yu W, Serra CA, Khan IU, Ding S, Gomez RI, Bouquey M, Muller R (2017) Development of an elongational-flow microprocess for the production of size-controlled nanoemulsions: batch operation. Macromol React Eng 11:1600024

    Article  Google Scholar 

  38. 38.

    Ramirez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204(1):22–31

    CAS  Article  Google Scholar 

  39. 39.

    Millan et al. (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312(1):L5–L9

    Article  Google Scholar 

  40. 40.

    Zysler RD, Biasi E, Ramos CA, Fiorani D, Romero H (2005) Surface and interparticle effects in amorphous magnetic nanoparticles. Surf Eff Magn Nanoparticles 239–261

  41. 41.

    Kodama RH, Berkowitz AE, McNiff Jr EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77(2):394–397

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michele Giordano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taddei, C., Sansone, L., Ausanio, G. et al. Fabrication of polystyrene-encapsulated magnetic iron oxide nanoparticles via batch and microfluidic-assisted production. Colloid Polym Sci 297, 861–870 (2019). https://doi.org/10.1007/s00396-019-04496-4

Download citation


  • Nanoparticles
  • Magnetite
  • Batch
  • Synthesis
  • Microfluidic