Skip to main content

Advertisement

Log in

In situ synthesis of hydroxyapatite/carboxymethyl cellulose composites for bone regeneration applications

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The study of inorganic hydroxyapatite (HA) assembly in polymer matrix is of great interest in bone tissue engineering field. An in situ synthesis method is employed in this study to synthesise carboxymethyl cellulose (CMC)/HA composite scaffolds to mimic the natural bone. The formation of HA in CMC matrix is initiated at three different temperature (30 °C, 60 °C and 90 °C) and the size of HA decreased with the increase of temperature. The morphology of the scaffolds as viewed by scanning electron microscope shows the formation of rough surfaces with agglomerated HA that can favour appreciable attachment of cells. The X-ray diffraction and Fourier transform infrared spectroscopy confirmed the purity of the formed HA in the polymer matrix. The mechanical properties of the scaffolds reveal that they can form suitable templates to support newly formed bone cells at the site of the defect. The cytotoxicity test of scaffolds with the fibroblast (NIH3T3) cells demonstrated that they can form a suitable template for the attachment of cells and proliferation in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R (2014) Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 3:3–7

    PubMed  PubMed Central  Google Scholar 

  2. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1:216–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Del Rev 64:1063–1077

    Article  CAS  Google Scholar 

  6. O'Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  7. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  9. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Article  CAS  Google Scholar 

  10. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Article  Google Scholar 

  11. Turon P, del Valle LJ, Alemán C, Puiggalí J (2017) Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Appl Sci 7:60

    Article  CAS  Google Scholar 

  12. Zamiri A, De S (2011) Mechanical properties of hydroxyapatite single crystals from nanoindentation data. J Mech Behav Biomed Mater 4:146–152

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Liu C (2014) Biomimetic collagen/hydroxyapatite composite scaffolds: fabrication and characterizations. J Bionic Eng 11:600–609

    Article  Google Scholar 

  14. Manjubala I, Scheler S, Bössert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2:75–84

    Article  CAS  PubMed  Google Scholar 

  15. Saravanan S, Leena R, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365

    Article  CAS  PubMed  Google Scholar 

  16. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B (2017) Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: fabrication, characterization, and in vivo study. Mater Sci Eng C 76:701–714

    Article  CAS  Google Scholar 

  17. Beladi F, Saber-Samandari S, Saber-Samandari S (2017) Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Mater Sci Eng C 75:385–392

    Article  CAS  Google Scholar 

  18. Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37:187–205

    PubMed  Google Scholar 

  19. Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng 104:30–33

    Article  CAS  PubMed  Google Scholar 

  20. Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C 45:343–347

    Article  CAS  Google Scholar 

  21. Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie 266:37–45

    Article  CAS  Google Scholar 

  22. Xiao H, Hou C, Guan S, Liu Y (2006) Preparation and evaluation of chitosan–Carboxymethyl cellulose membrane for prevention of postoperative intestinal adhesion: an experimental study. Acad J Second Mil Med Univ 27:755–759

    CAS  Google Scholar 

  23. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724

    Article  CAS  Google Scholar 

  24. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40

    Article  CAS  Google Scholar 

  25. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garai S, Sinha A (2014) Biomimetic nanocomposites of carboxymethyl cellulose–hydroxyapatite: novel three dimensional load bearing bone grafts. Colloids Surf B Biointerfaces 115:182–190

    Article  CAS  PubMed  Google Scholar 

  27. Neira IS, Kolen’ko YV, Lebedev OI, van Tendeloo G, Gupta HS, Guitián F et al (2009) An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst Growth Des 9:466–474

    Article  CAS  Google Scholar 

  28. Zakharov N, Ezhova ZA, Koval’ E, Kalinnikov V, Chalykh A (2005) Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial. Inorg Mater 41:509–515

    Article  CAS  Google Scholar 

  29. Manoj M, Subbiah R, Mangalaraj D, Ponpandian N, Viswanathan C, Park K (2015) Influence of growth parameters on the formation of hydroxyapatite (HAp) nanostructures and their cell viability studies. Nano 2:2–13

    Google Scholar 

  30. Cullity B. Chemical analysis by X-ray diffraction. Elements of X-ray diffraction, Addison-Wesley, Massachusetts 2001:397–420

  31. Poinern GEJ, Brundavanam RK, Le XT, Nicholls PK, Cake MA, Fawcett D (2014) The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications. Sci Rep 4:6234–6242

    Google Scholar 

  32. Sivakumar M, Manjubala I, Panduranga Rao K (2002) Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite–chitosan composite microspheres. Carbohydr Polym 49:281–288

    Article  CAS  Google Scholar 

  33. El-Sayed S, Mahmoud K, Fatah A, Hassen ADSC (2011) TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Phys B Condens Matter 406:4068–4076

    Article  CAS  Google Scholar 

  34. Arul V, Masilamoni J, Jesudason E, Jaji P, Inayathullah M, Dicky John D et al (2012) Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study. J Biomater Appl 26:917–938

    Article  CAS  PubMed  Google Scholar 

  35. Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymers 2:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, Duda GN (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45:185–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author (PB) acknowledges the VIT University for providing Research Associateship and research scholar fund for carrying out this work. The authors would like to acknowledge the SEM facility provided by DST-FIST program (SBST) and central facility of XRD, TGA and FTIR from SAS, VIT University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Manjubala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjubala, I., Basu, P. & Narendrakumar, U. In situ synthesis of hydroxyapatite/carboxymethyl cellulose composites for bone regeneration applications. Colloid Polym Sci 296, 1729–1737 (2018). https://doi.org/10.1007/s00396-018-4393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4393-9

Keywords

Navigation