Skip to main content
Log in

Ion size effect on counterion condensation around a spherical colloidal particle in a salt-free medium containing only counterions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A theory of counterion condensation around a spherical colloidal particle in a salt-free medium containing only counterions developed by Imai and Oosawa as reported by Busseiron Kenkyu 52:42, 1952 ibid. 59:99, 1953) and later by Ohshima (J Colloid Interface Sci 247:18, 2002) is extended to incorporate the ion size effect on the basis of the modified Poisson-Boltzmann equation using the Carnahan-Starling activity coefficient of counterions. The potential distribution depends on the particle surface charge, the particle volume fraction, and the average counterion volume fraction. It is shown that for a dilute particle suspension, the counterion condensation occurs, leading to a decrease in the particle surface potential when the following two conditions are both satisfied: (i) the scaled particle surface charge is greater than the logarithm of the inverse of the particle volume fraction and (ii) the average counterion volume fraction is much smaller than the particle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7

Similar content being viewed by others

References

  1. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662

    Google Scholar 

  2. Verwey EJW, Overbeek JTHG (1948) Theory of the stability of lyophobic colloids. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  3. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    Article  CAS  Google Scholar 

  4. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  5. Lyklema J (2005) Fundamentals of interface and colloid Science, Volume IV, Chapter 3. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  6. Spasic A (2005) In: Hsu JP (ed) Finely Dispersed particles. micro-. nano-, atto-engineering. CRC Press, Boca Raton

    Google Scholar 

  7. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  8. Ohshima H (2010) Biophysical chemistry of biointerfaces. Wiley, Hoboken

    Book  Google Scholar 

  9. Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. Wiley, Hoboken

    Google Scholar 

  10. Fuoss RM, Katchalsky A, Lifson S (1951) The potential of an infinite rod-like molecule and the distribution of the counter ions. Proc Natl Acad Sci US 37:579–589

    Article  CAS  Google Scholar 

  11. Afrey T, Berg PW, Morawetz H (1951) The counterion distribution in solutions of rod-shaped polyelectrolytes. J Polym Sci 7:543–547

    Article  Google Scholar 

  12. Imai N, Oosawa F (1952). Busseiron Kenkyu 52:42–62 (in Japanese)

    Google Scholar 

  13. Imai N, Oosawa F (1953). Busseiron Kenkyu 59:99–121 (in Japanese)

    Google Scholar 

  14. Oosawa F (1971) Polyelectrolytes. Dekker, New York

    Google Scholar 

  15. Ohshima H (2002) Surface charge density/surface potential relationship for a spherical colloidal particle in a salt-free medium. J Colloid Interface Sci 247:18–23

    Article  CAS  PubMed  Google Scholar 

  16. Ohshima H (2002) Electrophoretic mobility of a spherical colloidal particle in a salt-free medium. J Colloid Interface Sci 248:499–503

    Article  CAS  PubMed  Google Scholar 

  17. Sparnaay MJ (1972) Ion-size corrections of the Poisson-Boltzmann equation. J Electroanal Chem 37:65–70

    Article  CAS  Google Scholar 

  18. Adamczyk Z, Warszyński P (1996) Role of electrostatic interactions in particle adsorption. Adv Colloid Interface Sci 63:41–149

    Article  CAS  Google Scholar 

  19. Biesheuvel PW, van Soestbergen M (2007) Counterion volume effects in mixed electrical double layers. J Colloid Interface Sci 316:490–499

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Garcia JJ, Horno J, Grosse C (2011) Poisson-Boltzmann description of the electrical double layer including ion size effects. Langmuir 27:13970–13974

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Garcia JJ, Horno J, Grosse C (2012) Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: finite ion size and effective ion permittivity effects. J Colloid Interface Sci 380:213–221

    Article  CAS  PubMed  Google Scholar 

  22. Giera B, Henson N, Kober EM, Shell MS, Squires TM (2015) Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31:3553–3562

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Garcia JJ, Horno J, Grosse C (2016) Ion size effects on the dielectric and electrokinetic properties in aqueous colloidal suspensions. Curr Opin Colloid Interface Sci 24:23–31

    Article  CAS  Google Scholar 

  24. Bikerman JJ (1942) Structure and capacity of electrical double layer. Philos Mag 33:384

    Article  CAS  Google Scholar 

  25. Hill TL (1962) Statistical thermodynamics. Addison-Westley, Reading

    Google Scholar 

  26. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636

    Article  CAS  Google Scholar 

  27. Ohshima H (2016) An approximate analytic solution to the modified Poisson-Boltzmann equation. Effects of ionic size. Colloid Polym Sci accepted 294:2121–2125. https://doi.org/10.1007/s00396-016-3973-9

    Article  CAS  Google Scholar 

  28. Ohshima H (2017) Approximate analytic expressions for the electrostatic interaction energy between two colloidal particles based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295:289–296

    Article  CAS  Google Scholar 

  29. Ohshima H (2017) A simple algorithm for the calculation of an approximate electrophoretic mobility of a spherical colloidal particle based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295:543–548

    Article  CAS  Google Scholar 

  30. Ohshima H (2018) Approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical or cylindrical colloidal particle based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 296:647–652

    Article  CAS  Google Scholar 

  31. Simha R (1952) A treatment of the viscosity of concentrated suspensions. J Appl Phys 23:1020–1024

    Article  CAS  Google Scholar 

  32. Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids retative to beds of spherical particles. AICHE J 4:197–201

    Article  CAS  Google Scholar 

  33. Ruiz-Reina E, Carrique F, Rubio-Hernández FJ, Gómez-Merino AI, Gárcia-Sanchez P (2003) Electroviscous effect of moderately concentrated colloidal suspensions. J Phys Chem B 107:9528–9534

    Article  CAS  Google Scholar 

  34. Rubio-Hernández FJ, Carrique F, Ruiz-Reina E (2004) The primary electroviscous effect in colloidal suspensions. Adv Colloid Interf Sci 107:51–60

    Article  CAS  Google Scholar 

  35. Zholkovskiy EK, Olusola BA, Jacob H, Masliyah JH (2006) Spherical cell approach for the effective viscosity of suspensions. J Phys Chem B 110:19726–19734

    Article  CAS  PubMed  Google Scholar 

  36. Attard P (1993) Simulation of the chemical potential and the cavity free energy of dense hard sphere fluids. J Chem Phys 98:2225–2231

    Article  CAS  Google Scholar 

  37. Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19:289–306 (1911) Corrections ibid 34, 591–592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Ion size effect on counterion condensation around a spherical colloidal particle in a salt-free medium containing only counterions. Colloid Polym Sci 296, 1293–1300 (2018). https://doi.org/10.1007/s00396-018-4347-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4347-2

Keywords

Navigation