Skip to main content
Log in

Self-assembly of L-proline functional thermoresponsive double hydrophlic block copolymers for aldol reaction in water: the influence of POEGA block content

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The self-assembly of L-proline functional thermoresponsive double hydrophlic block copolymers (DHBCs) can effectively catalyze aldol reaction in water. Considering the block content of copolymers influences the assemblies and catalytic activities, thermoresponsive DHBCs supported L-proline P(NIPAm-co-ProlA)-b-POEGA with different POEGA block content were prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The therm-triggered self-assemblies were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Then, the resultant assemblies were used as catalysts for the aldol reaction with cyclohexanone and 4-nitrobenzaldehyde as substrates. The results indicated that P(NIPAm-co-ProlA)-b-POEGA with ca. 18 mol% of POEGA can form stable catalytic system, which maintained high selectivity and productivity of product, accompanied with satisfactory reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. List B, Lerner RA, Barbas CF (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  2. Notz W, List B (2000) Catalytic asymmetric synthesis ofanti-1,2-diols. J Am Chem Soc 122:7386–7387

    Article  CAS  Google Scholar 

  3. Gröger H, Wilken J (2001) The application of L-proline as an enzyme mimic and further new asymmetric syntheses using small organic molecules as chiral catalysts. Angew Chem Int Ed 40:529–532

    Article  Google Scholar 

  4. Lindström UM (2002) Stereoselective organic reactions in water. Chem Rev 102:2751–2772

    Article  CAS  PubMed  Google Scholar 

  5. Jarvo ER, Miller SJ (2002) Amino acids and peptides as asymmetric organocatalysts. Tetrahedron 58:2481–2495

    Article  CAS  Google Scholar 

  6. Tang Z, Jiang F, Yu LT, Cui X, Gong LZ, Mi AQ (2003) Novel small organic molecules for a highly enantioselective direct aldol reaction. J Am Chem Soc 125:5262–5263

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi Y, Aratake S, Okano T, Takahashi J (2006) Combined proline–surfactant organocatalyst for the highly diastereo- and enantioselective aqueous direct cross-aldol reaction of aldehydes. Angew Chem Int Ed 118:5653–5655

    Article  Google Scholar 

  8. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107:5471–5569

    Article  CAS  PubMed  Google Scholar 

  9. Cordova A, Notz W, Barbas CFIII (2002). Chem Commun 24:3024–3025

    Article  Google Scholar 

  10. Darbre T, Machuqueiro M (2003). Chem Commun 9:1090–1091

    Article  CAS  Google Scholar 

  11. Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H (2004) Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angew Chem Int Ed 43:1983–1986

    Article  CAS  Google Scholar 

  12. Nyberg AI, Usano A, Pihko PM (2004). Synlett 11:1891–1896

    Google Scholar 

  13. Font D, Sayalero S, Bastero A, Jimeno C, Pericas MA (2008) Toward an artificial aldolase. Org Lett 10:337–340

    Article  CAS  PubMed  Google Scholar 

  14. Mase N, Barbas III CF (2012). Org Biomol Chem 8:4043–4050

    Article  CAS  Google Scholar 

  15. Bartok M (2015) Advances in immobilized organocatalysts for the heterogeneous asymmetric direct aldol reactions. Catal Rev 57:192–255

    Article  CAS  Google Scholar 

  16. Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts†. Chem Rev 103:3401–3430

    Article  CAS  PubMed  Google Scholar 

  17. Lu A, Cotanda P, Patterson JP, Longbottom DA, O’Reilly RK (2012) Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chem Commun 48:9699–9701

    Article  CAS  Google Scholar 

  18. Huerta E, Stals PJM, Meijer EW, Palmans ARA (2013) Consequences of folding a water-soluble polymer around an organocatalyst. Angew Chem Int Ed 52:2906–2910

    Article  CAS  Google Scholar 

  19. Zhang JL, Zhang MX, Tang KJ, Verpoort F, Sun T (2014) Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32–46

    Article  CAS  PubMed  Google Scholar 

  20. Upadhyay P, Srivastava V (2016) Proline based organocatalysis: supported and unsupported approach. Curr Organocatal 3:243–269

    Article  CAS  Google Scholar 

  21. Lu A, Smart TP, EppsIII TH, Longbottom DA, O’Reilly RK (2011) l-proline functionalized polymers prepared by RAFT polymerization and their assemblies as supported organocatalysts. Macromolecules 44:7233–7241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131:4830–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mase N, Nakai Y, Ohara N, Yoda H, Takabe K (2006) Organocatalytic direct asymmetric aldol reactions in water. J Am Chem Soc 128:734–735

    Article  CAS  PubMed  Google Scholar 

  24. Zayas HA, Lu A, Valade D, Amir F, Jia Z, O’Reilly RK, Monteiro MJ (2013) Thermoresponsive polymer-supported l-proline micelle catalysts for the direct asymmetric aldol reaction in water. ACS Macro Lett 2:327–331

    Article  CAS  Google Scholar 

  25. Hayashi Y, Sumiya T, Takahashi J, Gotoh H (2006) Highly diastereo- and enantioselective direct aldol reactions in water. Angew Chem Int Ed 45:958–961

    Article  CAS  Google Scholar 

  26. Aratake S, Itoh T, Okano T, Nagae N, Sumiya T, Shoji M, Hayashi Y (2007) Highly diastereo- and enantioselective direct aldol reactions of aldehydes and ketones catalyzed by siloxyproline in the presence of water. Chem Eur J 13:10246–10256

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki N, Inoue T, Asada T, Akebi R, Kobayashi G, Rikukawa M, Masuyama Y, Ogasawara M, Takahashi T, Thang SH (2013) Asymmetric aldol reaction on water using an organocatalyst tethered on a thermoresponsive block copolymer. Chem Lett 42:1493–1495

    Article  CAS  Google Scholar 

  28. Lu A, Moatsou D, Hands-Portman I, Longbottom DA, O’Reilly RK (2014) Recyclable l-proline functional nanoreactors with temperature-tuned activity based on core–shell nanogels. ACS Macro Lett 3:1235–1239

    Article  CAS  Google Scholar 

  29. Boyer C, Bulmus V, Davis TP (2009) Efficient usage of thiocarbonates for both the production and the biofunctionalization of polymers. Macromol Rapid Commun 30:493–497

    Article  CAS  PubMed  Google Scholar 

  30. Frangville C, Li Y, Billotey C, Talham DR, Taleb J, Roux P, Marty J, Mingotaud C (2016) Assembly of double-hydrophilic block copolymers triggered by gadolinium ions: new colloidal MRI contrast agents. Nano Lett 16:4069–4073

    Article  CAS  PubMed  Google Scholar 

  31. Mori H, Kato I, Endo T (2009) Dual-stimuli-responsive block copolymers derived from proline derivatives. Macromolecules 42:4985–4992

    Article  CAS  Google Scholar 

  32. An HY, Wang EB, Xiao DR, Li YG, Su ZM, Xu L (2006) Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper–amino acid complexes. Angew Chem Int Ed 118:918–922

    Article  Google Scholar 

  33. An Z, Zhang WH, Shi HM, Jing H (2006) An effective heterogeneous l-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support. J Catal 241:319–327

    Article  CAS  Google Scholar 

  34. Xu J, Ye J, Liu S (2007) Synthesis of well-defined cyclic Poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40:9103–9110

    Article  CAS  Google Scholar 

  35. Ikegami S, Hamamoto H (2009) Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev 109:583–593

    Article  CAS  PubMed  Google Scholar 

  36. Jiang X, Zhang G, Narain R, Liu S (2009) Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir 25:2046–2054

    Article  CAS  PubMed  Google Scholar 

  37. Cheng H, Shen L, Wu C (2006) LLS and FTIR studies on the hysteresis in association and dissociation of poly(n-isopropylacrylamide) chains in water. Macromolecules 39:2325–2329

    Article  CAS  Google Scholar 

  38. Jiang X, Feng C, Lu GL, Huang XY (2015) Synthesis of temperature and pH/CO2 responsive homopolymer bearing oligo(ethylene glycol) unit and N,N-diethylamino ethyl group and its solution property. Polymer 64:268–276

    Article  CAS  Google Scholar 

  39. Yan J, Ji W, Chen E, Li Z, Liang D (2008) Association and aggregation behavior of poly(ethylene oxide)-b-poly (n-isopropylacrylamide) in aqueous solution. Macromolecules 41:4908–4913

    Article  CAS  Google Scholar 

  40. Kujawa P, Winnik FM (2001) Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: a new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules 34:4130–4135

    Article  CAS  Google Scholar 

  41. Xia Y, Burke NAD, Stöver HDH (2006) End Group effect on the thermal response of narrow-disperse poly(n-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275–2283

    Article  CAS  Google Scholar 

  42. Khimani M, Yusa S, Nagae A, Enomotob R, Aswalc VK, Kesselmand E, Daninod D, Bahadura P (2015) Self-assembly of multi-responsive poly(N-isopropylacrylamide)-b-poly(N,N-dimethylaminopropylacrylamide) in aqueous media. Eur Polym J 69:96–109

    Article  CAS  Google Scholar 

  43. Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic interaction in phase transition of poly(n-isopropylacrylamide) aqueous solution. Macromolecules 36:9929–9934

    Article  CAS  Google Scholar 

  44. Suchao-in N, Chirachanchai S, Perrier S (2009) pH- and thermo-multi-responsive fluorescent micelles from block copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer 50:4151–4158

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Nature Science Foundation of China (Grant No.21403151), the Natural Science Foundation of Shanxi Province (Grant No.201601D011032), the Natural Science Foundation for Young Scientists of Shanxi Province (Grant No. 201601D021045), and the Joint Postgraduate Training base Personnel Training Project of Shanxi Province (Grant No.2017JD17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Xu, W., Wang, Q. et al. Self-assembly of L-proline functional thermoresponsive double hydrophlic block copolymers for aldol reaction in water: the influence of POEGA block content. Colloid Polym Sci 296, 1109–1117 (2018). https://doi.org/10.1007/s00396-018-4327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4327-6

Keywords

Navigation