Advertisement

Colloid and Polymer Science

, Volume 296, Issue 5, pp 961–969 | Cite as

Synthesis of gold colloids using polyelectrolytes and macroelectrolytes containing arsonic moieties

  • Ana M. Herrera-González
  • M. Caldera-Villalobos
  • P. B. Bocardo-Tovar
  • J. García-Serrano
Original Contribution
  • 52 Downloads

Abstract

The control of size, shape, and stabilization of nanostructures is a grand challenge in the nanotechnology. For this purpose, two polyelectrolytes and two macroelectrolytes were synthesized. Polyelectrolytes with arsonic acid groups were synthetized by chemical modification of poly(p-acryloyloxibenzaldehyde) using ortho- and para-aminophenylarsonic acids (PE-1 and PE-2). Meanwhile, macroelectrolytes with arsonic acid groups were synthesized from hexachlorocyclotriphosphazene using arsanilic acids in ortho- and para-position (ME-1 and ME-2). Because of the position of arsonic acid groups, the degree of substitution of polyelectrolytes and macroelectrolytes, and the dissociation in liquid media, different nanostructures were obtained with them using the colloidal method. Quasi-spherical nanoparticles with average sizes of 6, 12, and 16 nm were obtained using PE-1, PE-2, and ME-2 in aqueous solutions, respectively. ME-1 is a strong reducing agent for Au3+ ions, and it led to obtaining of highly anisotropic nanostructures, such as dodecahedron, decahedron, and triangular and hexagonal nanoplates.

Keywords

Polyelectrolyte Macroelectrolyte Au nanoparticle Anisotropic Arsonic acid 

Notes

Acknowledgments

The authors acknowledge the financial support through the project CONACyT CB-168071 and H. Welti P. for his assistance in the English language.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4309_MOESM1_ESM.jpg (1.4 mb)
ESM 1 a) Temporal evolution of UV-Vis spectrum of Au nanoparticles stabilized with PE-1 and b) size distribution histogram of nanoparticles. (JPEG 1385 kb)
396_2018_4309_MOESM2_ESM.jpg (1.6 mb)
ESM 2 a) Temporal evolution of UV-Vis spectrum of Au nanoparticles stabilized with PE-2 and b) size distribution histogram of nanoparticles. (JPEG 1602 kb)
396_2018_4309_MOESM3_ESM.jpg (1.5 mb)
ESM 3 Temporal evolution of UV-Vis spectrum of Au nano-assemblies stabilized with ME-1 in DMF. (JPEG 1572 kb)
396_2018_4309_MOESM4_ESM.jpg (1.8 mb)
ESM 4 a) Temporal evolution of UV-Vis spectrum of Au nanoparticles stabilized with ME-2 and b) size distribution histogram of nanoparticles. (JPEG 1872 kb)

References

  1. 1.
    Eustis S, El-Sayed M (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217CrossRefGoogle Scholar
  2. 2.
    García-Serrano J, Pal U, Herrera AM, Salas P, Angeles-Chavez C (2008) One-step “green” synthesis and stabilization of Au and Ag nanoparticles using ionic polymers. Chem Mater 20(16):5146–5153CrossRefGoogle Scholar
  3. 3.
    Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44(2):119–137CrossRefGoogle Scholar
  4. 4.
    Tomoda K, Yabuki N, Terada H, Makino K (2014) Application of polymeric nanoparticles prepared by an antisolvent diffusion with preferential solvation for iontophoretic transdermal drug delivery. Colloid Polym Sci 292(12):3195–3203CrossRefGoogle Scholar
  5. 5.
    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264CrossRefGoogle Scholar
  6. 6.
    Kharkwal A, Nitu JK, Tyagi SB, Kharkwal M (2015) Novel synthesis of selective phase-shape orientation of AgInS2 nanoparticles at low temperature. Colloid Polym Sci 293(7):1953–1959CrossRefGoogle Scholar
  7. 7.
    Mallick K, Witcomb M, Scurrell M (2005) Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach. Applied Physics A 80(2):395–398CrossRefGoogle Scholar
  8. 8.
    Yang J, Lee JY, Too H-P (2006) Phase-transfer identification of core-shell structures in bimetallic nanoparticles. Plasmonics 1(1):67–78CrossRefGoogle Scholar
  9. 9.
    Pal A, Shah S, Devi S (2007) Synthesis of Au, Ag and Au–Ag alloy nanoparticles in aqueous polymer solution. Colloids Surf A Physicochem Eng Asp 302(1):51–57CrossRefGoogle Scholar
  10. 10.
    Medina-Ramírez I, González-García M, Liu JL (2009) Nanostructure characterization of polymer-stabilized gold nanoparticles and nanofilms derived from green synthesis. J Mater Sci 44(23):6325–6332CrossRefGoogle Scholar
  11. 11.
    Gurav P, Naik SS, Ansari K, Srinath S, Kishore KA, Setty YP, Sonawane S (2014) Stable colloidal copper nanoparticles for a nanofluid: production and application. Colloids Surf A Physicochem Eng Asp 441:589–597CrossRefGoogle Scholar
  12. 12.
    Sifontes ÁB, Melo L, Maza C, Mendes JJ, Mediavilla M, Brito JL, Zoltan T, Albornoz A (2010) Preparation of silver nanoparticles in the absence of polymer stabilizers. Química Nova 33(6):1266–1269CrossRefGoogle Scholar
  13. 13.
    Pugh TL, Heller W (1960) Coagulation and stabilization of colloidal solutions with polyelectrolytes. J Polym Sci 47(149):219–227CrossRefGoogle Scholar
  14. 14.
    Sun X, Dong S, Wang E (2004) One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 45(7):2181–2184CrossRefGoogle Scholar
  15. 15.
    Coulter MM, Dinglasan JA, Goh JB, Nair S, Anderson DJ, Dong VM (2010) Preparing water-dispersed palladium nanoparticles via polyelectrolyte nanoreactors. Chem Sci 1(6):772–775CrossRefGoogle Scholar
  16. 16.
    Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2(5):837–846CrossRefGoogle Scholar
  17. 17.
    Zhang A-Q, Cai L-J, Sui L, Qian D-J, Chen M (2013) Reducing properties of polymers in the synthesis of noble metal nanoparticles. Polym Rev 53(2):240–276CrossRefGoogle Scholar
  18. 18.
    Miyatake K, Hay AS (2001) New poly(arylene ether)s with pendant phosphonic acid groups. J Polym Sci A Polym Chem 39(21):3770–3779CrossRefGoogle Scholar
  19. 19.
    García-Serrano J, Herrera AM, Pérez-Moreno F, Valdez MA, Pal U (2006) Synthesis of novel ionic polymers containing arsonic acid group. J Polym Sci B Polym Phys 44(11):1627–1634CrossRefGoogle Scholar
  20. 20.
    Ye C, Zhang Z, Liu W (2002) A novel synthesis of hexasubstituted cyclotriphosphazenes. Synth Commun 32(2):203–209CrossRefGoogle Scholar
  21. 21.
    Popova GV, Alekperov DA, Sakurai T, Ihara H, Kireev VV (2006) Synthesis of functional poly(amino acids) on cyclophosphazene templates. Polym Sci Ser B 48(4):198–202CrossRefGoogle Scholar
  22. 22.
    Rao MR, Gayatri G, Kumar A, Sastry GN, Ravikanth M (2009) Cyclotriphosphazene ring as a platform for multiporphyrin assemblies. Chem Eur J 15(14):3488–3496CrossRefGoogle Scholar
  23. 23.
    Caldera-Villalobos M, Herrera-González AM, García-Serrano J, Martins-Alho MA, Montalvo-Sierra MI (2016) Polyelectrolytes with tetrazole pendant groups useful in the stabilization of au and ag nanoparticles. J Appl Polym Sci 133(31)Google Scholar
  24. 24.
    Caldera-Villalobos M, Peláez-Cid AA, Herrera-González AM (2016) Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups. J Environ Manag 177:65–73CrossRefGoogle Scholar
  25. 25.
    Herrera-González AM, Peláez-Cid AA, Caldera-Villalobos M (2017) Adsorption of textile dyes present in aqueous solution and wastewater using polyelectrolytes derived from chitosan. J Chem Technol Biotechnol 92(7):1488–1495CrossRefGoogle Scholar
  26. 26.
    Pereira SO, Barros-Timmons A, Trindade T (2014) Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 292(1):33–50CrossRefGoogle Scholar
  27. 27.
    Nishida K, Watanabe H (1974) Interaction of basic dyes and polyelectrolytes in water-organic solvents mixtures. Colloid Polym Sci 252(5):392–395CrossRefGoogle Scholar
  28. 28.
    Herrera González AM, Caldera Villalobos M, García-Serrano J, Peláez Cid AA (2016) Polyelectrolytes with sulfonic acid groups useful in the synthesis and stabilization of Au and Ag nanoparticles. Designed Monomers and Polymers 19(4):330–339CrossRefGoogle Scholar
  29. 29.
    Carriedo GA, Fernández-Catuxo L, Garcia Alonso FJ, Elipe PG, González PA, Sánchez G (1996) On the synthesis of functionalized cyclic and polymeric aryloxyphosphazenes from phenols. J Appl Polym Sci 59(12):1879–1885CrossRefGoogle Scholar
  30. 30.
    Dietze U (1971) Zur kenntnis der infrarotspektren einiger arsonsäuren. J Prakt Chem 313(5):889–898CrossRefGoogle Scholar
  31. 31.
    Tsivgoulis GM, Sotiropoulos DN, Ioannou PV (1991) Rac-1, 2-diacyloxypropyl-3-arsonic acids: arsonolipid analogues of phosphonolipids. Phosphorus Sulfur Silicon Relat Elem 63(3–4):329–334CrossRefGoogle Scholar
  32. 32.
    Caldera-Villalobos M, García-Serrano J, Peláez-Cid AA, & Herrera-González AM (2017) Polyelectrolytes with sulfonate groups obtained by chemical modification of chitosan useful in green synthesis of Au and Ag nanoparticles. J Appl Polymer Sci:45240-n/aGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias Básicas e Ingeniería, Laboratorio de PolímerosUniversidad Autónoma del Estado de HidalgoMineral de la Reforma, Hidalgo, C.PMexico
  2. 2.Doctorado en Ciencias de los MaterialesUniversidad Autónoma del Estado de HidalgoMineral de la Reforma, HidalgoMexico

Personalised recommendations