Skip to main content
Log in

Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we designed copolymer microgels by the copolymerisation of N-vinylcaprolactam (VCL) and two acrylamides (N-isopropylacrylamide (NIPAAm) and N-isopropylmethacrylamide (NIPMAAm)) under precipitation conditions in aqueous phase. In synthesis protocols, the ratio between monomers was varied from 1:5 to 5:1 mol/mol. By NMR and Raman spectroscopy, we determined the chemical composition of PVCL/NIPAAm and PVCL/NIPMAAm copolymer microgels reflecting the initial monomer ratio in the reaction mixture. The hydrodynamic radii of PVCL/NIPAAm microgels are around 375 nm (at 25 °C) and do not vary with the copolymer composition. On the contrary, for PVCL/NIPMAAm microgels, the size decreases from 450 to 250 nm with an increase of the VCL amount in copolymer structure. The heterogeneity of the microgel structure in terms of the distribution of the monomer units was probed by 1H transverse magnetization relaxation NMR, showing that the VCL, NIPAAm and NIPMAAm units are unorderly distributed in the colloidal networks. The investigation of volume phase transition temperature (VPTT) for copolymer microgels was performed using dynamic light scattering, NMR and differential scanning calorimetry. It has been found that PVCL/NIPAAm microgels show VPTT around 35 °C independently from the copolymer composition; however, PVCL/NIPMAAm particles exhibit a nonlinear increase of VPTT from 34 to 45 °C as the NIPMAAm fraction in copolymer structure increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pelton R (2000) Adv Colloid Interf Sci 85:1–33

    Article  CAS  Google Scholar 

  2. Tauer K, Gau D, Schulze S, Volkel A, Dimova R (2009) Colloid Polym Sci 287:299–312

    Article  CAS  Google Scholar 

  3. Hoare T, Pelton R (2008) Curr Opin Colloid Interf Sci 13:413–428

    Article  CAS  Google Scholar 

  4. Tan BH, Tam KC (2008) Adv Colloid Int Sci 136:25–44

    Article  CAS  Google Scholar 

  5. Karg M, Hellweg T (2009) Curr Opin Colloid Interf Sci 14:438–450

    Article  CAS  Google Scholar 

  6. Zhang JG, Xu SQ, Kumacheva EJ (2004) Am Chem Soc 126:7908–7914

    Article  CAS  Google Scholar 

  7. Pich AZ, Adler HJP (2007) Polym Int 56:291–307

    Article  CAS  Google Scholar 

  8. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  9. Kabanov AV, Vinogradov SV (2009) Angew Chem Int Ed 48:5418–5429

    Article  CAS  Google Scholar 

  10. Saunders BR, Laajam N, Daly E, Teow S, Hu XH, Stepto R (2009) Adv Colloid Interf Sci 147–48:251–262

    Article  Google Scholar 

  11. Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  12. Kratz K, Lapp A, Eimer W, Hellweg T (2002) Colloids Surf A Physicochem Eng Aspects 197:55–67

    Article  CAS  Google Scholar 

  13. Hazot P, Delair T, Pichot C, Chapel JP, Elaissari A (2003) Comptes Rendus Chimie 6:1417–1424

    Article  CAS  Google Scholar 

  14. Elmas B, Tuncel M, Senel S, Patir S, Tuncel A (2007) J Colloid Interface Sci 313:174–183

    Article  CAS  Google Scholar 

  15. Imaz A, Miranda JI, Ramos J, Forcada J (2008) Eur Polym J 44:4002

    Article  CAS  Google Scholar 

  16. Gao Y, Au-Yeng SCF, Wu C (1999) Macromolecules 32:3674

    Article  CAS  Google Scholar 

  17. Boyko V, Richter S, Pich A, Arndt KF (2003) Coll Polym Sci 282:127

    Article  CAS  Google Scholar 

  18. Boyko V, Richter S, Burchard W, Arndt KF (2007) Langmuir 23:776

    Article  CAS  Google Scholar 

  19. Boyko V, Pich A, Lu Y, Richter S, Arndt KF, Adler HJ (2003) Polymer 44:7821

    Article  CAS  Google Scholar 

  20. Häntzschel N, Zhang F, Eckert F, Pich A, Winnik MA (2007) Langmuir 23:10793

    Article  Google Scholar 

  21. Lau ACW, Wu C (1999) Macromolecules 32(3):581

    Article  CAS  Google Scholar 

  22. Naha P, Casey A, Tenuta T, Lynch I, Dawson KA (2009) Aquat Toxicol 92:146–154

    Article  CAS  Google Scholar 

  23. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Prog Polym Sci 32:1275

    Article  CAS  Google Scholar 

  24. Debord JD, Lyon LA (2003) Langmuir 19:7662–7664

    Article  CAS  Google Scholar 

  25. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) J Chem Soc—Faraday Trans 92:5013–5016

    Article  CAS  Google Scholar 

  26. Kratz K, Hellweg T, Eimer W (2000) Colloids Surf A Physicochem Eng Aspects 170:137–149

    Article  CAS  Google Scholar 

  27. Pich A, Tessier A, Boyko V, Lu Y, Adler H-JP (2006) Macromolecules 39:7701–7707

    Article  CAS  Google Scholar 

  28. Kettel M, Möller M, Pich A (2011) Polymer 52:1917–1924

    Article  CAS  Google Scholar 

  29. Pich A, Zhang F, Shen L, Berger S, Ornatsky O, Baranov V, Winnik MA (2008) Small 4:2171–2175

    Article  CAS  Google Scholar 

  30. Berger S, Ornatsky O, Baranov V, Winnik MA, Pich A (2010) J Mater Chem 20:5141–5150

    Article  CAS  Google Scholar 

  31. Berndt I, Popescu C, Wortmann F-J, Richtering W (2006) Angew Chem Int Ed 45:1081–1085

    Article  CAS  Google Scholar 

  32. Mallikarjuna B, Madhu Sudhana Rao K, Prasad CV, Chowdoji Rao K, Krishana Rao KSV, Subha MCS (2011) JAPS 01(06):171–177

    Google Scholar 

  33. Schachschal S, Balaceanu A, Melian C, Demco DE, Eckert T, Richtering W, Pich A (2010) Macromolecules 43:4331

    Article  CAS  Google Scholar 

  34. Balaceanu A, Demco DE, Möller M, Pich A (2011) Macromolecules 44:2161

    Article  CAS  Google Scholar 

  35. Spěváček J (2009) Curr Opin Colloid Interf Sci 14:184–191

    Article  Google Scholar 

  36. Demco DE, Hafner S, Spiess HW (2002) In: Litvinov V, De PP (eds) Handbook of spectroscopy of rubbery materials. Repra Technology, Shawbury, UK

  37. Demco DE, Blümich B (2004) In: Encyclopedia of polymer science and technology 10, p 637

  38. Guillermo A, Cohen Addad PJ, Bazile JP, Duracher D, Elaissari A, Pichot C (1999) J Polym Sci Part B Polym Phys 38:889

    Article  Google Scholar 

  39. Ru G, Wang N, Huang S, Feng J (2009) Macromolecules 42:2074

    Article  CAS  Google Scholar 

  40. Stieger M, Richtering W, Pedersen JS, Linder P (2004) J Chem Phys 120:6197

    Article  CAS  Google Scholar 

  41. Sotta P, Fülber C, Demco DE, Blümich B, Spiess HW (1996) Macromolecules 29:6222

    Article  CAS  Google Scholar 

  42. Shostakovski MF, Sydelkovskaya FP (1957) Vesnik Akad Nauk SSSR 7:127

    Google Scholar 

  43. Makhaeva EE, Thang LTM, Starodubzev SG, Khohlov AR (1996) Macromol Chem Phys 197:1973

    Article  CAS  Google Scholar 

  44. Heskins M, Guillet JE (1968) J Macromol Sci Chem 2:1441

    Article  CAS  Google Scholar 

  45. Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1

    Article  CAS  Google Scholar 

  46. Tirumala VR, Ilavsky J, Ilavsky MJ (2006) Chem Phys 124:234911

    Google Scholar 

  47. Kano M, Kokufuta E (2009) Langmuir 25(15):8649–8655

    Article  CAS  Google Scholar 

  48. Kirsh Prog YuE (1993) Polym Sci 18:519

    Google Scholar 

Download references

Acknowledgement

AB and AP thank VolkswagenStiftung for financial support of this research.

Supporting Information

1H NMR spectra of PVCL/NIPMAAm microgels; determination of the chemical composition of PVCL/NIPMAAm microgels by Raman Spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrij Pich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaceanu, A., Mayorga, V., Lin, W. et al. Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium. Colloid Polym Sci 291, 21–31 (2013). https://doi.org/10.1007/s00396-012-2659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2659-1

Keywords

Navigation