Skip to main content
Log in

Conformation of curdlan as observed by tapping mode atomic force microscopy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tapping mode atomic force microscopy was used to study the bacterial polysaccharide curdlan deposited from dimethyl sulfoxide (Me2SO) and NaOH aqueous solutions. For curdlan in Me2SO, flexible single chains corresponding to a disordered conformation were observed at a concentration of 5 mg/l, and the chain diameter was measured to be 0.65±0.05 nm, which showed good agreement with the expected value of the single polysaccharide chain. Because the concentration of curdlan increased, the chains became more rigid and aggregated, subsequently, the network structures of curdlan appeared. However, curdlan samples deposited from a 5 mM NaOH solution showed entirely different conformations. The chains observed were almost in the form of micelles of several nanometers, which were supermolecular assemblies. The heterogeneously dense zones were observed as the curdlan concentration increased to 40 mg/l. When the concentration of curdlan was above 100 mg/l, which might cause the real concentration of curdlan on the mica substrate after drying treatment exceeding some critical value of gelation, gel network structures were formed. Keeping on increasing the concentration of curdlan, the image showed a more homogeneous fibrous network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harada T, Masada M, Fujimori K, Meada I (1966) Agric Biol Chem 30:196

    Google Scholar 

  2. Deslandes Y, Marchessault RH, Sarko A (1980) Macromolecules 13:1466

    Article  CAS  Google Scholar 

  3. Stipanovic AJ, Giammatteo PJ (1989) Curdlan and scleroglucan: NMR characterization of solution and gel properties. In: Edward GJ (ed) Polymers in aqueous media. American Chemical Society, Washington, DC, pp 73–87

    Google Scholar 

  4. Nishinari K, Zhang H (2000) Curdlan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Washington, DC, pp 269–287

    Google Scholar 

  5. Ogawa K, Watanable T, Tsurugi J, Ono S (1972) Carbohydr Res 23:399

    Article  CAS  Google Scholar 

  6. Saito H, Ohki T, Sasaki T (1977) Biochemistry 16:908

    Article  PubMed  CAS  Google Scholar 

  7. Konno A, Harada T (1991) Food Hydrocoll 5:427

    Article  CAS  Google Scholar 

  8. Gao Y, Fukuda A, Katsuraya K, Kaneko Y, Mimura T, Nakashima H, Uryu T (1997) Macromolecules 30:3224

    Article  CAS  Google Scholar 

  9. Jeon KJ, Katsuraya K, Inazu T, Kaneko Y, Mimura T, Uryu T (2000) J Am Chem Soc 122:12536

    Article  CAS  Google Scholar 

  10. Zhang H, Huang L, Nishinari K, Watase M, Konno A (2000) Food Hydrocoll 14:121

    Article  CAS  Google Scholar 

  11. Bluhm TL, Deslandes Y, Marchessault RH, Perez S, Rinaudo M (1982) Carbohydr Res 100:117

    Article  CAS  Google Scholar 

  12. Zhang H, Nishinari K, Williams MAK, Foster TJ, Norton IT (2002) Int J Biol Macromol 30:7

    Article  PubMed  Google Scholar 

  13. Balnois E, Stoll S, Wilkinson KJ, Buffle J, Rinaudo M, Milas M (2000) Macromolecules 33:7440

    Article  CAS  Google Scholar 

  14. Kirby AR, Gunning AP, Morris VJ (1996) Biopolymers 38:355

    Article  PubMed  CAS  Google Scholar 

  15. Bae AH, Lee SW, Ikeda M, Sano M, Shinkai S, Sakurai K (2004) Carbohydr Res 339:251

    Article  PubMed  CAS  Google Scholar 

  16. Vuppu AK, Garcia AA, Vernia C (1997) Biopolymers 42:89

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda S, Shishido Y (2005) J Agric Food Chem 53:786

    Article  PubMed  CAS  Google Scholar 

  18. Tada T, Tamai N, Matsumoto T, Masuda T (2001) Biopolymers 58:129

    Article  PubMed  CAS  Google Scholar 

  19. Dais P, Vlachou S, Taravel FR (2001) Biomacromolecules 2:1137

    Article  PubMed  CAS  Google Scholar 

  20. Cowman MK, Li M, Balazs EA (1998) Biophys J 75:2030

    Article  PubMed  CAS  Google Scholar 

  21. McIntire TM, Brant DA (1996) Biopolymers 42:133

    Article  Google Scholar 

  22. Fulton WS, Atkins EDT (1980) The gelling mechanism and relationship to molecular structure of microbila polysaccharide curdlan. In: French AD, Gardner KH (eds) Fibre diffraction methods. American Chemical Society, Washington, DC, pp 385–410

    Google Scholar 

  23. Jin Y, Zhang H, Yin Y, Nishinari K (2006) Carbohydr Res 341:90

    Article  PubMed  CAS  Google Scholar 

  24. Kasai N, Harada T (1980) Ultrastructure of curdlan. In: Fibre diffraction methods. American Chemical Society, Washington, DC, pp 363–383

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (20274025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y., Zhang, H., Yin, Y. et al. Conformation of curdlan as observed by tapping mode atomic force microscopy. Colloid Polym Sci 284, 1371–1377 (2006). https://doi.org/10.1007/s00396-006-1503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1503-x

Keywords

Navigation