Dietary glycemic index, glycemic load and risk of bladder cancer: a prospective study

Abstract

Purpose

Previous studies have provided limited evidence for an adverse effect of high glycemic index (GI) and glycemic load (GL) on bladder cancer risk. This study aimed to examine the association between GI, GL and bladder cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial.

Methods

GI and GL scores were computed among 101,721 participants in the PLCO study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression model adjusting for confounders.

Results

After a median of 12.5 years of follow-up, 776 incident bladder cancer cases occurred. There was no significant association between bladder cancer risk and GI (HRQ5vsQ1 = 1.18, 95% CI 0.94–1.48, p for trend = 0.177) or GL (HRQ5vsQ1 = 0.92, 95% CI 0.65–1.30, p for trend = 0.826). The associations did not differ by continuous analyses. Spline regression plots revealed a lower risk of bladder cancer with higher GI or GL, but the difference was not statistically significant. There was no statistical evidence for nonlinearity (P for nonlinearity > 0.05).

Conclusion

In summary, analysis of the PLCO cohort did not provide evidence that higher GI or GL diets were associated with greater bladder cancer risk.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71(1):96–108. https://doi.org/10.1016/j.eururo.2016.06.010

    Article  PubMed  Google Scholar 

  2. 2.

    Mertens LS, Neuzillet Y, Horenblas S, van Rhijn BWG (2014) Landmarks in non-muscle-invasive bladder cancer. Nat Rev Urol 11(8):476–480. https://doi.org/10.1038/nrurol.2014.130

    Article  PubMed  Google Scholar 

  3. 3.

    Scarpato KR, Morgans AK, Moses KA (2015) Optimal management of muscle-invasive bladder cancer—a review. Res Rep Urol 7:143–151. https://doi.org/10.2147/rru.s73566

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Grayson M (2017) Bladder cancer. Nature 551(7679):S33. https://doi.org/10.1038/551S33a

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Keimling M, Behrens G, Schmid D, Jochem C, Leitzmann MF (2014) The association between physical activity and bladder cancer: systematic review and meta-analysis. Br J Cancer 110(7):1862–1870. https://doi.org/10.1038/bjc.2014.77

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Xu X (2019) Processed meat intake and bladder cancer risk in the prostate, lung, colorectal, and ovarian (PLCO) cohort. Cancer Epidemiol Biomarkers Prev 28(12):1993–1997. https://doi.org/10.1158/1055-9965.epi-19-0604

    Article  PubMed  Google Scholar 

  7. 7.

    World Cancer Research Fund (2007) How diet, nutrition and physical activity affect bladder cancer risk. https://www.wcrf.org/dietandcancer/bladder-cancer. Accessed 10 June 2020

  8. 8.

    George SM, Mayne ST, Leitzmann MF, Park Y, Schatzkin A, Flood A, Hollenbeck A, Subar AF (2009) Dietary glycemic index, glycemic load, and risk of cancer: a prospective cohort study. Am J Epidemiol 169(4):462–472. https://doi.org/10.1093/aje/kwn347

    Article  PubMed  Google Scholar 

  9. 9.

    Sieri S, Agnoli C, Pala V, Grioni S, Brighenti F, Pellegrini N, Masala G, Palli D, Mattiello A, Panico S, Ricceri F, Fasanelli F, Frasca G, Tumino R, Krogh V (2017) Dietary glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy study. Sci Rep 7(1):9757. https://doi.org/10.1038/s41598-017-09498-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Augustin LSA, Taborelli M, Montella M, Libra M, La Vecchia C, Tavani A, Crispo A, Grimaldi M, Facchini G, Jenkins DJA, Botti G, Serraino D, Polesel J (2017) Associations of dietary carbohydrates, glycaemic index and glycaemic load with risk of bladder cancer: a case-control study. Br J Nutr 118(9):722–729. https://doi.org/10.1017/s0007114517002574

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hu J, La Vecchia C, Augustin LS, Negri E, de Groh M, Morrison H, Mery L (2013) Glycemic index, glycemic load and cancer risk. Ann Oncol 24(1):245–251. https://doi.org/10.1093/annonc/mds235

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Prorok PC, Andriole GL, Bresalier RS, Buys SS, Chia D, Crawford ED, Fogel R, Gelmann EP, Gilbert F, Hasson MA, Hayes RB, Johnson CC, Mandel JS, Oberman A, O’Brien B, Oken MM, Rafla S, Reding D, Rutt W, Weissfeld JL, Yokochi L, Gohagan JK (2000) Design of the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin Trials 21(6 Suppl):273S–309S

    CAS  Article  Google Scholar 

  13. 13.

    Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, McIntosh A, Rosenfeld S (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154(12):1089–1099. https://doi.org/10.1093/aje/154.12.1089

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76(1):5–56. https://doi.org/10.1093/ajcn/76.1.5

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Flood A, Subar AF, Hull SG, Zimmerman TP, Jenkins DJ, Schatzkin A (2006) Methodology for adding glycemic load values to the National Cancer Institute Diet History Questionnaire database. J Am Diet Assoc 106(3):393–402. https://doi.org/10.1016/j.jada.2005.12.008

    Article  PubMed  Google Scholar 

  16. 16.

    Subar AF, Midthune D, Kulldorff M, Brown CC, Thompson FE, Kipnis V, Schatzkin A (2000) Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am J Epidemiol 152(3):279–286. https://doi.org/10.1093/aje/152.3.279

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Schoenfeld D (1980) Chi squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 67(1):145–153. https://doi.org/10.1093/biomet/67.1.145

    Article  Google Scholar 

  18. 18.

    Marrie RA, Dawson NV, Garland A (2009) Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol 62(5):511–517. https://doi.org/10.1016/j.jclinepi.2008.05.015

    Article  PubMed  Google Scholar 

  19. 19.

    Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124(1):17–27. https://doi.org/10.1093/oxfordjournals.aje.a114366

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Biddinger SB, Ludwig DS (2005) The insulin-like growth factor axis: a potential link between glycemic index and cancer. Am J Clin Nutr 82(2):277–278. https://doi.org/10.1093/ajcn.82.2.277

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sandhu, Dunger DB, Giovannucci EL (2002) Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. JNCI 94(13):972–980. https://doi.org/10.1093/jnci/94.13.972

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kaaks R, Lukanova A (2001) Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc 60(1):91–106. https://doi.org/10.1079/pns200070

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Pi-Sunyer FX (2002) Glycemic index and disease. Am J Clin Nutr 76(1):290S–298S. https://doi.org/10.1093/ajcn/76/1.290S

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wu S, Liu Y, Michalek JE, Mesa RA, Parma DL, Rodriguez R, Mansour AM, Svatek R, Tucker TC, Ramirez AG (2019) Carotenoid intake and circulating carotenoids are inversely associated with the risk of bladder cancer: a dose-response meta-analysis. Adv Nutr. https://doi.org/10.1093/advances/nmz120

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Flood A, Peters U, Jenkins DJA, Chatterjee N, Subar AF, Church TR, Bresalier R, Weissfeld JL, Hayes RB, Schatzkin A, Prostate LCOPT (2006) Carbohydrate, glycemic index, and glycemic load and colorectal adenomas in the Prostate, Lung, Colorectal, and Ovarian Screening Study. Am J Clin Nutr 84(5):1184–1192. https://doi.org/10.1093/ajcn/84.5.1184

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Bingham SA, Luben R, Welch A, Wareham N, Khaw K-T, Day N (2003) Are imprecise methods obscuring a relation between fat and breast cancer? Lancet (London, England) 362(9379):212–214. https://doi.org/10.1016/s0140-6736(03)13913-x

    Article  Google Scholar 

  27. 27.

    Schatzkin A, Kipnis V (2004) Could exposure assessment problems give us wrong answers to nutrition and cancer questions? J Natl Cancer Inst 96(21):1564–1565. https://doi.org/10.1093/jnci/djh329

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Cancer Institute for access to NCI’s data collected by the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. The statements contained herein are solely those of the authors and do not represent or imply concurrence or endorsement by NCI.

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Shivappa, N. Dietary glycemic index, glycemic load and risk of bladder cancer: a prospective study. Eur J Nutr (2020). https://doi.org/10.1007/s00394-020-02313-1

Download citation

Keywords

  • Glycemic index
  • Glycemic load
  • Bladder cancer
  • Cohort
  • PLCO