Skip to main content
Log in

Assessing the impact of drinking water iodine concentrations on the iodine intake of Chinese pregnant women living in areas with restricted iodized salt supply

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The supply of non-iodized salt and the water improvement project have been conducted to reduce the iodine concentration in drinking water in areas with elevated water iodine. We aimed to assess the impact of water iodine concentration (WIC) on the iodine intake of pregnant women in areas with restricted iodized salt supply, and determine the cutoff values of WIC in areas with non-iodized salt supply.

Methods

Overall, 534 pregnant women who attended routine antenatal outpatient visits in Zibo Maternal and Child Health Hospital in Gaoqing County were recruited. The 24-h urine iodine excretion (UIE) in 534 samples and the iodine concentration in 534 drinking water samples were estimated. Urinary iodine excretion, daily iodine intake, and daily iodine intake from drinking water (WII) were calculated. The relationship between WIC and daily iodine take was analyzed.

Results

The median WIC, spot urine iodine concentration (UIC), and 24-h UIE were 17 (6, 226) μg/L, 145 (88, 267) μg/L, and 190 (110, 390) μg/day, respectively. A significant positive correlation was found between WIC and UIE (R2 = 0.265, p < 0.001) and UIC (R2 = 0.261, p < 0.001). The contribution rate of WII to total iodine intake increased from 3.0% in the group with WIC of < 10 μg/L to 45.7% in the group with WIC of 50–99 μg/L.

Conclusion

The iodine content in drinking water is the major iodine source in pregnant women living in high-water iodine areas where iodized salt supply is restricted. The contribution rate of daily iodine intake from drinking water increases with the increase in water iodine concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laurberg P, Bulow Pedersen I, Knudsen N, Ovesen L, Andersen S (2001) Environmental iodine intake affects the type of nonmalignant thyroid disease. Thyroid 11(5):457–469. https://doi.org/10.1089/105072501300176417

    Article  CAS  PubMed  Google Scholar 

  2. Yarrington C, Pearce EN (2011) Iodine and pregnancy. J Thyroid Res 2011:934104. https://doi.org/10.4061/2011/934104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. WHO, UNICEF (2007) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd edn. WHO, Geneva

    Google Scholar 

  4. Teas J, Braverman LE, Kurzer MS, Pino S, Hurley TG, Hebert JR (2007) Seaweed and soy: companion foods in Asian cuisine and their effects on thyroid function in American women. J Med Food 10(1):90–100. https://doi.org/10.1089/jmf.2005.056

    Article  CAS  PubMed  Google Scholar 

  5. Katagiri R, Yuan X, Kobayashi S, Sasaki S (2017) Effect of excess iodine intake on thyroid diseases in different populations: a systematic review and meta-analyses including observational studies. PLoS ONE 12(3):e0173722. https://doi.org/10.1371/journal.pone.0173722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4:14. https://doi.org/10.1186/1756-6614-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li M, Liu DR, Qu CY, Zhang PY, Qian QD, Zhang CD, Jia QZ, Wang HX, Eastman CJ, Boyages SC et al (1987) Endemic goitre in central China caused by excessive iodine intake. Lancet 2(8553):257–259

    CAS  PubMed  Google Scholar 

  8. Suzuki H, Higuchi T, Sawa K, Ohtaki S, Horiuchi Y (1965) “Endemic coast goitre” in Hokkaido. Jpn Acta Endocrinol (Copenh) 50(2):161–176

    Article  CAS  Google Scholar 

  9. Sang Z, Chen W, Shen J, Tan L, Zhao N, Liu H, Wen S, Wei W, Zhang G, Zhang W (2013) Long-term exposure to excessive iodine from water is associated with thyroid dysfunction in children. J Nutr 143(12):2038–2043. https://doi.org/10.3945/jn.113.179135

    Article  CAS  PubMed  Google Scholar 

  10. Liu P, Liu L, Shen H, Jia Q, Wang J, Zheng H, Ma J, Zhou D, Liu S, Su X (2014) The standard, intervention measures and health risk for high water iodine areas. PLoS ONE 9(2):e89608. https://doi.org/10.1371/journal.pone.0089608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao Y, Sun H, Li C, Li Y, Peng S, Fan C, Teng W, Shan Z (2018) Effect of iodine nutrition on pregnancy outcomes in an iodine-sufficient area in China. Biol Trace Elem Res 182(2):231–237. https://doi.org/10.1007/s12011-017-1101-4

    Article  CAS  PubMed  Google Scholar 

  12. Kassim IA, Moloney G, Busili A, Nur AY, Paron P, Jooste P, Gadain H, Seal AJ (2014) Iodine intake in Somalia is excessive and associated with the source of household drinking water. J Nutr 144(3):375–381. https://doi.org/10.3945/jn.113.176693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farebrother J, Zimmermann MB, Abdallah F, Assey V, Fingerhut R, Gichohi-Wainaina WN, Hussein I, Makokha A, Sagno K, Untoro J, Watts M, Andersson M (2018) Effect of excess iodine intake from iodized salt and/or groundwater iodine on thyroid function in nonpregnant and pregnant women, infants, and children: a multicenter study in East Africa. Thyroid 28(9):1198–1210. https://doi.org/10.1089/thy.2018.0234

    Article  CAS  PubMed  Google Scholar 

  14. GB/T19380 (2016) Determination and classification of the areas of high water iodine and the endemic areas of iodine excess goiter. China Standards Press, Beijing

    Google Scholar 

  15. Shen H, Liu S, Sun D, Zhang S, Su X, Shen Y, Han H (2011) Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation. Br J Nutr 106(2):243–247. https://doi.org/10.1017/S0007114511000055

    Article  CAS  PubMed  Google Scholar 

  16. Andersen S, Petersen SB, Laurberg P (2002) Iodine in drinking water in Denmark is bound in humic substances. Eur J Endocrinol 147(5):663–670. https://doi.org/10.1530/eje.0.1470663

    Article  CAS  PubMed  Google Scholar 

  17. Andersen S, Guan H, Teng W, Laurberg P (2009) Speciation of iodine in high iodine groundwater in china associated with goitre and hypothyroidism. Biol Trace Elem Res 128(2):95–103. https://doi.org/10.1007/s12011-008-8257-x

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Zhang Z, Hu Y, Bian J, Jiang W, Wang X, Sun L, Jiang Q (2014) Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China. Int J Environ Res Public Health 11(5):5431–5444. https://doi.org/10.3390/ijerph110505431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu C, Guo X, Tang J, Guo X, Lu Z, Zhang J, Bi Z (2016) Iodine nutritional status in the adult population of Shandong Province (China) prior to salt reduction program. Eur J Nutr 55(5):1933–1941. https://doi.org/10.1007/s00394-015-1009-8

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Chen W, Du C, Fan L, Wang W, Gao M, Zhang Y, Cui T, Hao Y, Pearce EN, Wang C, Zhang W (2019) Iodine nutrition and thyroid function in pregnant women exposed to different iodine sources. Biol Trace Elem Res 190(1):52–59. https://doi.org/10.1007/s12011-018-1530-8

    Article  CAS  PubMed  Google Scholar 

  21. Jahreis G, Hausmann W, Kiessling G, Franke K, Leiterer M (2001) Bioavailability of iodine from normal diets rich in dairy products—results of balance studies in women. Exp Clin Endocrinol Diabetes 109(3):163–167. https://doi.org/10.1055/s-2001-14840

    Article  CAS  PubMed  Google Scholar 

  22. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington

    Google Scholar 

  23. Society; CN (2013) Chinese dietarty reference intakes (2013). Science Press, Beijing

    Google Scholar 

  24. Shi X, Han C, Li C, Mao J, Wang W, Xie X, Li C, Xu B, Meng T, Du J, Zhang S, Gao Z, Zhang X, Fan C, Shan Z, Teng W (2015) Optimal and safe upper limits of iodine intake for early pregnancy in iodine-sufficient regions: a cross-sectional study of 7190 pregnant women in China. J Clin Endocrinol Metab 100(4):1630–1638. https://doi.org/10.1210/jc.2014-3704

    Article  CAS  PubMed  Google Scholar 

  25. Henjum S, Barikmo I, Gjerlaug AK, Mohamed-Lehabib A, Oshaug A, Strand TA, Torheim LE (2010) Endemic goitre and excessive iodine in urine and drinking water among Saharawi refugee children. Public Health Nutr 13(9):1472–1477. https://doi.org/10.1017/S1368980010000650

    Article  PubMed  Google Scholar 

  26. Watts MJ, Middleton DRS, Marriott A, Humphrey OS, Hamilton E, McCormack V, Menya D, Farebrother J, Osano O (2019) Iodine status in western Kenya: a community-based cross-sectional survey of urinary and drinking water iodine concentrations. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00352-0

    Article  PubMed  Google Scholar 

  27. Aakre I, Bjoro T, Norheim I, Strand TA, Barikmo I, Henjum S (2015) Excessive iodine intake and thyroid dysfunction among lactating Saharawi women. J Trace Elem Med Biol 31:279–284. https://doi.org/10.1016/j.jtemb.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  28. Hussein IS, Min Y, Ghebremeskel K, Gaffar AM (2012) Iodine status and fish intake of Sudanese schoolchildren living in the Red Sea and White Nile regions. Public Health Nutr 15(12):2265–2271. https://doi.org/10.1017/S1368980012000833

    Article  PubMed  Google Scholar 

  29. Fuge R (2013) Soils and iodine deficiency. In: Selinus O (ed) Essentials of medical geology revised edition. Springer, Dordrecht, pp 417–432

    Chapter  Google Scholar 

  30. Rasmussen LB, Larsen EH, Ovesen L (2000) Iodine content in drinking water and other beverages in Denmark. Eur J Clin Nutr 54(1):57–60. https://doi.org/10.1038/sj.ejcn.1600893

    Article  CAS  PubMed  Google Scholar 

  31. Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, Jin Y, Yu X, Fan C, Chong W, Yang F, Dai H, Yu Y, Li J, Chen Y, Zhao D, Shi X, Hu F, Mao J, Gu X, Yang R, Tong Y, Wang W, Gao T, Li C (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354(26):2783–2793. https://doi.org/10.1056/NEJMoa054022

    Article  CAS  PubMed  Google Scholar 

  32. Leung AM, Avram AM, Brenner AV, Duntas LH, Ehrenkranz J, Hennessey JV, Lee SL, Pearce EN, Roman SA, Stagnaro-Green A, Sturgis EM, Sundaram K, Thomas MJ, Wexler JA (2015) Potential risks of excess iodine ingestion and exposure: statement by the american thyroid association public health committee. Thyroid 25(2):145–146. https://doi.org/10.1089/thy.2014.0331

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nicola JP, Carrasco N, Masini-Repiso AM (2015) Dietary I(-) absorption: expression and regulation of the Na(+)/I(-) symporter in the intestine. Vitam Horm 98:1–31. https://doi.org/10.1016/bs.vh.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  34. Birke M, Reimann C, Albanese S, Andersson M, Banks D, Batista M, Bel-lan A, Bityukova L, Cicchella D, Demetriades A, Devic N, Dinelli E, Ďuriš M, Filzmoser P, Flight D, Flynn R, Frengstad B, Gilucis A, Glatte WB (2010) Geochemistry of European bottled water. Borntraeger Science Publishers, Stuttgart

    Google Scholar 

  35. Voutchkova DD, Kristiansen SM, Hansen B, Ernstsen V, Sorensen BL, Esbensen KH (2014) Iodine concentrations in Danish groundwater: historical data assessment 1933–2011. Environ Geochem Health 36(6):1151–1164. https://doi.org/10.1007/s10653-014-9625-4

    Article  CAS  PubMed  Google Scholar 

  36. Barikmo I, Henjum S, Dahl L, Oshaug A, Torheim E (2011) Environmental implication of iodine in water, milk and other foods used in Saharawi refugees camps in Tindouf, Algeria. J Food Compost Anal 24(4–5):637–641. https://doi.org/10.1016/j.jfca.2010.10.003

    Article  CAS  Google Scholar 

  37. Watts MJ, O'Reilly J, Maricelli A, Coleman A, Ander EL, Ward NI (2010) A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina. J Geochem Explor 107(2):87–93. https://doi.org/10.1016/j.gexplo.2009.11.002

    Article  CAS  Google Scholar 

  38. Watts MJ, Joy EJ, Young SD, Broadley MR, Chilimba AD, Gibson RS, Siyame EW, Kalimbira AA, Chilima B, Ander EL (2015) Iodine source apportionment in the Malawian diet. Sci Rep 5:15251. https://doi.org/10.1038/srep15251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen W, Li X, Wu Y, Bian J, Shen J, Jiang W, Tan L, Wang X, Wang W, Pearce EN, Zimmermann MB, Carriquiry AL, Zhang W (2017) Associations between iodine intake, thyroid volume, and goiter rate in school-aged Chinese children from areas with high iodine drinking water concentrations. Am J Clin Nutr 105(1):228–233. https://doi.org/10.3945/ajcn.116.139725

    Article  CAS  PubMed  Google Scholar 

  40. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, Ovesen L, Jorgensen T (2009) Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid 19(11):1281–1286. https://doi.org/10.1089/thy.2009.0094

    Article  CAS  PubMed  Google Scholar 

  41. Andersen S, Karmisholt J, Pedersen KM, Laurberg P (2008) Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals. Br J Nutr 99(4):813–818. https://doi.org/10.1017/S0007114507842292

    Article  CAS  PubMed  Google Scholar 

  42. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF (1992) Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res 62(1):66–72

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Center for Disease Control and Prevention of Gaoqing County for their support and help in field investigations. We appreciate the co-cooperation and participations of teachers, nurses, and pregnant women.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC Grant no. 81920108031, 81330064 and 71774115) and Science Foundation of Tianjin Medical University (no. 2017KJ235).

Author information

Authors and Affiliations

Authors

Contributions

ZW, CW, and TL were responsible for the study design. GM performed the field investigation, the data analysis, and writing of the manuscript. CY took part in the  field investigation and the data analysis. LL, PZ, GS, and SJ performed the laboratory detection of iodine. ZQ, ZY, DS, WW, and WG took part in the field investigation and laboratory detection. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interest

All authors and companies or organizations do not have any conflicts of interests.

Ethics approval

This study was approved by the Ethics Committee of Tianjin Medical University. All procedures performed in the studies were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All participants provided an informed consent after receiving a full explanation of the purpose and procedure of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Chen, W., Dong, S. et al. Assessing the impact of drinking water iodine concentrations on the iodine intake of Chinese pregnant women living in areas with restricted iodized salt supply. Eur J Nutr 60, 1023–1030 (2021). https://doi.org/10.1007/s00394-020-02308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02308-y

Keywords

Navigation