Depressive symptoms, fruit and vegetables consumption and urinary 3-indoxylsulfate concentration: a nested case–control study in the French Nutrinet-Sante cohort

Abstract

Purpose

Previous epidemiologic studies have provided some evidence of an inverse association between fruit and vegetables consumption and risk of developing recurrent depressive symptoms. This association could possibly be explained by the role of such dietary factors on the gut microbiota. Especially, indole, a metabolite of tryptophan produced by gut bacteria, may be associated with the development of mood disorders. Thus, the purpose of this study was to investigate relationships between fruit and vegetables intake, recurrent depressive symptoms and indole, using measurement of its main urinary excretion form, i.e., 3-indoxylsulfate, as a biomarker.

Methods

A nested case–control study was conducted in 891 women (aged 45–65) participating to the web-based NutriNet-Santé cohort with available dietary data and biological samples. Cases (individuals with recurrent depressive symptoms, n = 297) were defined as having two Center for Epidemiologic Studies–Depression Scale (CES-D) scores ≥ 16 during the follow-up and were matched with 2 controls having two CES-D scores < 16. Urinary 3-indoxylsulfate concentration was measured as a biomarker of indole production by the gut microbiota. Multivariable conditional logistic regression models were used to test the association of both fruit and vegetables consumption and urine 3-indoxylsulfate measurements with recurrent depressive symptoms. We also tested the association between fruit and vegetables consumption and urinary 3-indoxylsulfate levels using multivariate analysis of variance models.

Results

We found a significant inverse association between fruit and vegetables consumption and the risk of having recurrent depressive symptoms over a 2-year period. Fruit and vegetables consumption was inversely associated to urinary 3-indoxylsulfate concentration. However, no significant association was observed between urinary 3-indoxylsulfate levels and recurrent depressive symptoms within this sample.

Conclusions

Our results confirm that low fruit and vegetables consumption could be associated with recurrent depressive symptoms. We also found an inverse association between fruit and vegetable intake and urinary levels of 3-indoxylsulfate. However, it is not possible to conclude to a possible mediation role of the indole produced by the gut microbiota from tryptophan, since there was no relationship between 3-indoxylsulfate and recurrent depressive symptoms.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    2/3 of this category are constituted of individuals with intermediate position between manual workers + employees and managerial staff. The other third is constituted of intermediate professions in a more figurative way such as teachers, nurses and social workers.

References

  1. 1.

    Léon C, Chan Chee C, du Roscoät E, le groupe Baromètre santé 2017 (2018) La dépression en France chez les 18–75 ans: résultats du Baromètre santé 2017. Bull Epidémiol Hebd 32–33:637–644

    Google Scholar 

  2. 2.

    Bromet E, Andrade LH, Hwang I et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90. https://doi.org/10.1186/1741-7015-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Slavich GM, Irwin MR (2014) From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull 140:774–815. https://doi.org/10.1037/a0035302

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bender A, Hagan KE, Kingston N (2017) The association of folate and depression: a meta-analysis. J Psychiatr Res 95:9–18. https://doi.org/10.1016/j.jpsychires.2017.07.019

    Article  PubMed  Google Scholar 

  5. 5.

    Li Z, Li B, Song X, Zhang D (2017) Dietary zinc and iron intake and risk of depression: a meta-analysis. Psychiatry Res 251:41–47. https://doi.org/10.1016/j.psychres.2017.02.006

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Li Z, Wang W, Xin X et al (2018) Association of total zinc, iron, copper and selenium intakes with depression in the US adults. J Affect Disord 228:68–74. https://doi.org/10.1016/j.jad.2017.12.004

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Li Y, Lv M-R, Wei Y-J et al (2017) Dietary patterns and depression risk: a meta-analysis. Psychiatry Res 253:373–382. https://doi.org/10.1016/j.psychres.2017.04.020

    Article  PubMed  Google Scholar 

  8. 8.

    Lassale C, Batty GD, Baghdadli A et al (2018) Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0237-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Liu X, Yan Y, Li F, Zhang D (2016) Fruit and vegetable consumption and the risk of depression: a meta-analysis. Nutr Burbank Los Angel City Calif 32:296–302. https://doi.org/10.1016/j.nut.2015.09.009

    CAS  Article  Google Scholar 

  10. 10.

    Saghafian F, Malmir H, Saneei P et al (2018) Fruit and vegetable consumption and risk of depression: accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. Br J Nutr 119:1087–1101. https://doi.org/10.1017/S0007114518000697

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Borre YE, Moloney RD, Clarke G et al (2014) The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol 817:373–403. https://doi.org/10.1007/978-1-4939-0897-4_17

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Waclawikova B, El Aidy S (2018) Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharm Basel Switz. https://doi.org/10.3390/ph11030063

    Article  Google Scholar 

  13. 13.

    Jaglin M, Rhimi M, Philippe C et al (2018) Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front Neurosci 12:216. https://doi.org/10.3389/fnins.2018.00216

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gillam EM, Notley LM, Cai H et al (2000) Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39:13817–13824. https://doi.org/10.1021/bi001229u

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Banoglu E, Jha GG, King RS (2001) Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet 26:235–240. https://doi.org/10.1007/BF03226377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Banoglu E, King RS (2002) Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokinet 27:135–140. https://doi.org/10.1007/BF03190428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    King LJ, Parke DV, Williams RT (1966) The metabolism of [2-14C] indole in the rat. Biochem J 98:266–277. https://doi.org/10.1042/bj0980266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242. https://doi.org/10.1186/1471-2458-10-242

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Institut National de la Statistique et des Etudes Economiques https://www.insee.fr/fr/information/2406153. Accessed 22 June 2020

  20. 20.

    Morin AJS, Moullec G, Maiano C et al (2011) Psychometric properties of the Center for Epidemiologic Studies Depression Scale (CES-D) in French clinical and nonclinical adults. Rev Epidemiol Sante Publique 59:327–340. https://doi.org/10.1016/j.respe.2011.03.061

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    McDowell I (2006) Measuring Health, a Guide to Rating Scales and Questionnaires, 3rd edn. Oxford University Press, New York

    Google Scholar 

  22. 22.

    Le Moullec N, Deheeger M, Preziosi P (1996) Validation du manuel photos utilisé pour l’enquête alimentaire SU.VI.MAX. Cah Nutr Diet 31:158–164

    Google Scholar 

  23. 23.

    Arnault N (2013) Table de Compostion des Aliments, étude Nutrinet-Santé. [Food Composition Table, Nutrinet-Santé Study]. Éditions Inser

  24. 24.

    Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes 24:1119–1130

    CAS  Article  Google Scholar 

  25. 25.

    Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41

    PubMed  Google Scholar 

  26. 26.

    Craig CL, Marshall AL, Sjostrom M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  Google Scholar 

  27. 27.

    Hagstromer M, Oja P, Sjostrom M (2006) The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762

    Article  Google Scholar 

  28. 28.

    Hallal PC, Victora CG (2004) Reliability and validity of the International Physical Activity Questionnaire (IPAQ). Med Sci Sports Exerc 36:556

    Article  Google Scholar 

  29. 29.

    Carpenedo R, Mannaioni G, Moroni F (1998) Oxindole, a sedative tryptophan metabolite, accumulates in blood and brain of rats with acute hepatic failure. J Neurochem 70:1998–2003. https://doi.org/10.1046/j.1471-4159.1998.70051998.x

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sims J, Renwick AG (1983) The effects of saccharin on the metabolism of dietary tryptophan to indole, a known cocarcinogen for the urinary bladder of the rat. Toxicol Appl Pharmacol 67:132–151. https://doi.org/10.1016/0041-008x(83)90252-1

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Deguchi T, Nakamura M, Tsutsumi Y, Suenaga A, Otagiri M (2003) Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm Drug Dispos 24(8):345-355

    CAS  Article  Google Scholar 

  32. 32.

    Akbaraly TN, Sabia S, Shipley MJ et al (2013) Adherence to healthy dietary guidelines and future depressive symptoms: evidence for sex differentials in the Whitehall II study. Am J Clin Nutr 97:419–427. https://doi.org/10.3945/ajcn.112.041582

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kim J-M, Stewart R, Kim S-W et al (2008) Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. Br J Psychiatry J Ment Sci 192:268–274. https://doi.org/10.1192/bjp.bp.107.039511

    Article  Google Scholar 

  34. 34.

    Kim T-H, Choi J, Lee H-H, Park Y (2015) Associations between Dietary Pattern and Depression in Korean Adolescent Girls. J Pediatr Adolesc Gynecol 28:533–537. https://doi.org/10.1016/j.jpag.2015.04.005

    Article  PubMed  Google Scholar 

  35. 35.

    Cenit MC, Sanz Y, Codoner-Franch P (2017) Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 23:5486–5498. https://doi.org/10.3748/wjg.v23.i30.5486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zheng P, Zeng B, Zhou C et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796. https://doi.org/10.1038/mp.2016.44

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Winter G, Hart RA, Charlesworth RPG, Sharpley CF (2018) Gut microbiome and depression: what we know and what we need to know. Rev Neurosci 29:629–643. https://doi.org/10.1515/revneuro-2017-0072

    Article  PubMed  Google Scholar 

  38. 38.

    Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146:1564–1572. https://doi.org/10.1053/j.gastro.2014.01.058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    O’Mahony SM, Clarke G, Borre YE et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  PubMed  Google Scholar 

  41. 41.

    Lee J-H, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23:707–718. https://doi.org/10.1016/j.tim.2015.08.001

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Geypens B, Claus D, Evenepoel P et al (1997) Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41:70–76

    CAS  Article  Google Scholar 

  43. 43.

    Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302

    CAS  Article  Google Scholar 

  44. 44.

    Roager HM, Hansen LBS, Bahl MI et al (2016) Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol 1:16093. https://doi.org/10.1038/nmicrobiol.2016.93

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294. https://doi.org/10.1038/s41467-018-05470-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Muller M, Canfora EE, Blaak EE (2018) Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. https://doi.org/10.3390/nu10030275

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Führer R, Rouillon F (1989) The French version of the center for epidemiologic studies-depression scale. Psychiatr Psychol 4:163–166

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Cédric Agaesse (dietitian); Thi Hong Van Duong, Younes Esseddik (IT manager), Paul Flanzy, Régis Gatibelza and Jagatjit Mohinder (computer scientists); and Julien Allegre, Nathalie Arnault and Laurent Bourhis (data manager/statisticians) for their technical contribution to the NutriNet-Santé study. We thank all the volunteers of the NutriNet-Santé cohort.

Author information

Affiliations

Authors

Contributions

FS analyzed the data. FS wrote the manuscript. CP analyzed 3-indoxylsulfate and creatinine. PG, PM, NDP, LN, SR and EKG provided continuous scientific advice for the study and for the interpretation of results. These authors also critically reviewed the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Fabien Szabo de Edelenyi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szabo de Edelenyi, F., Philippe, C., Druesne-Pecollo, N. et al. Depressive symptoms, fruit and vegetables consumption and urinary 3-indoxylsulfate concentration: a nested case–control study in the French Nutrinet-Sante cohort. Eur J Nutr 60, 1059–1069 (2021). https://doi.org/10.1007/s00394-020-02306-0

Download citation

Keywords

  • NutriNet
  • Fruits
  • Vegetables
  • 3-Indoxylsulfate
  • Recurrent depressive symptoms
  • Nutrition
  • Microbiota
  • Indole