Whole milk consumption is associated with lower risk of coronary artery calcification progression: evidences from the Multi-Ethnic Study of Atherosclerosis

Abstract

Purpose

Coronary artery calcification (CAC) progression is a strong predictor of cardiovascular disease (CVD) morbidity and mortality. However, the association between whole milk and CAC progression remains unknown. Recent studies highlighted beneficial effects of short chain fatty acids (SCFA) from whole milk on CVD. In this study, we attempted to investigate the relationship between whole milk consumption and CAC progression, and the potential effect of SCFA in it.

Methods

We analyzed a population-based cohort with 5273 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) who completed a dietary questionnaire at baseline. CAC was measured at baseline and subsequent follow-up examinations by multi-detector computed tomography (MDCT) scans with Agatston scores. CAC progression was defined as increased CAC scores in the follow-up from the baseline exam.

Results

Participants consuming whole milk exhibited lower baseline CAC and CAC progression than those who never/rarely consumed whole milk (P < 0.001 and P = 0.010, respectively). Moreover, multivariable logistic regression analysis demonstrated that whole milk intake was independently associated with lower CAC progression (OR 0.765; 95% CI 0.600–0.977; P = 0.032), especially in males, participants with age ≤ 64 years and with body mass index (BMI) ≤ 25 kg/m2. Mediation analysis further showed that caproic acid, one kind of SCFA, partly mediated protective effects of whole milk on CAC progression.

Conclusions

Self-reported whole milk consumption was inversely associated with CAC progression in community-dwelling participants, especially in those at relatively low cardiovascular risks. The beneficial effect was partially mediated by SCFA. Therefore, whole milk can be incorporated into part of a cardio-protective diet. Regarding this, future studies may target SCFA to provide insight into more mechanistic views.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bostrom KI (2016) Where do we stand on vascular calcification? Vascul Pharmacol 84:8–14

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Radford NB, DeFina LF, Barlow CE, Lakoski SG, Leonard D, Paixao AR, Khera A, Levine BD (2016) Progression of CAC Score and Risk of Incident CVD. JACC Cardiovasc Imaging 9(12):1420–1429

    PubMed  Google Scholar 

  3. 3.

    Carr JJ, Jacobs DR Jr, Terry JG, Shay CM, Sidney S, Liu K, Schreiner PJ, Lewis CE, Shikany JM, Reis JP, Goff DC Jr (2017) Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiol 2(4):391–399

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Alexander DD, Bylsma LC, Vargas AJ, Cohen SS, Doucette A, Mohamed M, Irvin SR, Miller PE, Watson H, Fryzek JP (2016) Dairy consumption and CVD: a systematic review and meta-analysis. Br J Nutr 115(4):737–750

    CAS  PubMed  Google Scholar 

  5. 5.

    Report by the Central Committee for Medical and Community Program of the American Heart Association (1961) Dietary fat and its relation to heart attacks and strokes. JAMA 175:389–391

    Google Scholar 

  6. 6.

    Keys A (1997) Coronary heart disease in seven countries. Nutrition 13(3):250–252 (discussion 249, 253)

    CAS  PubMed  Google Scholar 

  7. 7.

    Dehghan M, Mente A, Rangarajan S, Sheridan P, Mohan V, Iqbal R, Gupta R, Lear S, Wentzel-Viljoen E, Avezum A, Lopez-Jaramillo P, Mony P, Varma RP, Kumar R, Chifamba J, Alhabib KF, Mohammadifard N, Oguz A, Lanas F, Rozanska D, Bostrom KB, Yusoff K, Tsolkile LP, Dans A, Yusufali A, Orlandini A, Poirier P, Khatib R, Hu B, Wei L, Yin L, Deeraili A, Yeates K, Yusuf R, Ismail N, Mozaffarian D, Teo K, Anand SS, Yusuf S (2018) Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 392(10161):2288–2297

    PubMed  Google Scholar 

  8. 8.

    Talaei M, Hosseini N, van Dam RM, Sadeghi M, Oveisgharan S, Dianatkhah M, Sarrafzadegan N (2019) Whole milk consumption and risk of cardiovascular disease and mortality: Isfahan Cohort Study. Eur J Nutr 58(1):163–171

    PubMed  Google Scholar 

  9. 9.

    Astrup A, Geiker NRW, Magkos F (2019) Effects of full-fat and fermented dairy products on cardiometabolic disease: food is more than the sum of its parts. Adv Nutr 10(5):924s–930s

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wang DD, Hu FB (2017) Dietary fat and risk of cardiovascular disease: recent controversies and advances. Annu Rev Nutr 37:423–446

    PubMed  Google Scholar 

  11. 11.

    Mozaffarian D, Wu JHY (2018) Flavonoids, dairy foods, and cardiovascular and metabolic health: a review of emerging biologic pathways. Circ Res 122(2):369–384

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Abedin M, Lim J, Tang TB, Park D, Demer LL, Tintut Y (2006) N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circ Res 98(6):727–729

    CAS  PubMed  Google Scholar 

  13. 13.

    Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genom 48(11):826–834

    CAS  Google Scholar 

  14. 14.

    Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP (2002) Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881

    PubMed  Google Scholar 

  15. 15.

    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832

    CAS  PubMed  Google Scholar 

  16. 16.

    Carr JJ, Nelson JC, Wong ND, McNitt-Gray M, Arad Y, Jacobs DR Jr, Sidney S, Bild DE, Williams OD, Detrano RC (2005) Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology 234(1):35–43

    PubMed  Google Scholar 

  17. 17.

    MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Astrup A (2014) A changing view on saturated fatty acids and dairy: from enemy to friend. Am J Clin Nutr 100(6):1407–1408

    CAS  PubMed  Google Scholar 

  19. 19.

    Hirahatake KM, Bruno RS, Bolling BW, Blesso C, Alexander LM, Adams SH (2019) Dairy foods and dairy fats: new perspectives on pathways implicated in cardiometabolic health. Adv Nutr. https://doi.org/10.1093/advances/nmz105

    Article  Google Scholar 

  20. 20.

    Avalos EE, Barrett-Connor E, Kritz-Silverstein D, Wingard DL, Bergstrom JN, Al-Delaimy WK (2013) Is dairy product consumption associated with the incidence of CHD? Public Health Nutr 16(11):2055–2063

    PubMed  Google Scholar 

  21. 21.

    Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, Geleijnse JM (2011) Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 93(1):158–171

    CAS  PubMed  Google Scholar 

  22. 22.

    Sun Y, Jiang C, Cheng KK, Zhang W, Leung GM, Lam TH, Schooling CM (2014) Milk consumption and cardiovascular risk factors in older Chinese: the Guangzhou Biobank Cohort Study. PLoS ONE 9(1):e84813

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85(2):295–350

    CAS  PubMed  Google Scholar 

  24. 24.

    Kim OY, Lee SM, An WS (2018) Impact of blood or erythrocyte membrane fatty acids for disease risk prediction: focusing on cardiovascular disease and chronic kidney disease. Nutrients 10(10):1454

    PubMed Central  Google Scholar 

  25. 25.

    Månsson HL (2008) Fatty acids in bovine milk fat. Food Nutr Res. https://doi.org/10.3402/fnr.v52i0.1821

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Vargas-Bello-Pérez E, Toro-Mujica P, Enriquez-Hidalgo D, Fellenberg MA, Gómez-Cortés P (2017) Short communication: discrimination between retail bovine milks with different fat contents using chemometrics and fatty acid profiling. J Dairy Sci 100(6):4253–4257

    PubMed  Google Scholar 

  27. 27.

    Bianchi AE, Silva ASD, Biazus AH, Richards NSPS, Pellegrini LG, Baldissera MD, Macedo VP, Silveira ALFD (2017) Adding palm oil to the diet of sheep alters fatty acids profile on yogurt: benefits to consumers. An Acad Bras Cien 89(3 Suppl):2471–2478

    CAS  Google Scholar 

  28. 28.

    Schonfeld P, Wojtczak L (2016) Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57(6):943–954

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24(7):660–672

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Strauss HW, Nakahara T, Narula N, Narula J (2019) Vascular calcification: the evolving relationship of vascular calcification to major acute coronary events. J Nucl Med 60(9):1207–1212

    CAS  PubMed  Google Scholar 

  31. 31.

    Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, Jaffer FA, Aikawa M, Weissleder R (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116(24):2841–2850

    CAS  PubMed  Google Scholar 

  32. 32.

    Yuan X, Wang L, Bhat OM, Lohner H, Li PL (2018) Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: antioxidant action of butyrate. Redox Biol 16:21–31

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Inolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R (2011) Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 22(9):849–855

    Google Scholar 

  34. 34.

    Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, Capettini LS, Lemos VS, Santos RA, Alvarez-Leite JI (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis NMCD 24(6):606–613

    CAS  PubMed  Google Scholar 

  35. 35.

    Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B (2015) Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 5:12676–12676

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Steppan J, Nyhan D, Berkowitz DE (2013) Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol 4:278–278

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Yahagi K, Kolodgie FD, Lutter C, Mori H, Romero ME, Finn AV, Virmani (2017) Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 37(2):191–204

    CAS  PubMed  Google Scholar 

  38. 38.

    Hecker M, Sommer N, Voigtmann H, Pak O, Mohr A, Wolf M, Vadász I, Herold S, Weissmann N, Morty RE, Seeger W, Mayer K (2014) Impact of short- and medium-chain fatty acids on mitochondrial function in severe inflammation. JPEN J Parenter Enteral Nutr 38(5):587–594

    PubMed  Google Scholar 

  39. 39.

    Pluznick JL (2017) Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep 19(4):25–25

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genom 47(6):187–197

    CAS  Google Scholar 

  41. 41.

    Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG, Haase N, Kräker K, Hering L, Maase M, Kusche-Vihrog K, Grandoch M, Fielitz J, Kempa S, Gollasch M, Zhumadilov Z, Kozhakhmetov S, Kushugulova A, Eckardt KU, Dechend R, Rump LC, Forslund SK, Müller DN, Stegbauer J, Wilck N (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139(11):1407–1421

    CAS  PubMed  Google Scholar 

  42. 42.

    Jensky NE, Criqui MH, Wright MC, Wassel CL, Brody SA, Allison MA (2010) Blood pressure and vascular calcification. Hypertension 55(4):990–997

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Miwa Y, Tsushima M, Arima H, Kawano Y, Sasaguri T (2004) Pulse pressure is an independent predictor for the progression of aortic wall calcification in patients with controlled hyperlipidemia. Hypertension 43(3):536–540

    CAS  PubMed  Google Scholar 

  44. 44.

    Hamley S (2017) The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials. Nutr J 16(1):30

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR (2013) Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346:e8707

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors, hereby, thank all the investigators, staffs and MESA participants for their contribution to promote research in vascular disease. We are grateful to National Heart Lung and Blood Institute (NHLBI) for cooperating with us to use datasets of the MESA examinations. This work was supported by National Natural Science Foundation of China [81870506, 81670676 and 81422011], Project of traditional Chinese medicine in Guangdong province [20201062], Basic Research Project of Shenzhen Science and Technology Innovation Committee [JCYJ20180306174648342 and JCYJ20190808102005602], Shenzhen futian district public health research project [FTWS2019003]

Author information

Affiliations

Authors

Contributions

Research idea and study design: SG, WH, and HH. Data acquisition: SG, JG, and HH. Data analyses/interpretation: SG, WH, and JG. Manuscript writing and review: SG, WH, JG, DL, JC, and HH. Final manuscript was read and approved by all the authors.

Corresponding authors

Correspondence to Jie Chen or Hui Huang.

Ethics declarations

Conflict of interest

They authors declared that they do not have anything to disclose in terms of conflict of interest with respect to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., He, W., Gao, J. et al. Whole milk consumption is associated with lower risk of coronary artery calcification progression: evidences from the Multi-Ethnic Study of Atherosclerosis. Eur J Nutr (2020). https://doi.org/10.1007/s00394-020-02301-5

Download citation

Keywords

  • Coronary artery calcification
  • Cardiovascular disease
  • Whole milk
  • Short chain fatty acids