Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults



Advanced glycation end products (AGEs) can be formed in foods by the reaction of reducing sugars with proteins, and have been shown to induce insulin resistance and obesity in experimental studies. We examined the association between dietary AGEs intake and changes in body weight in adults over an average of 5 years of follow-up.


A total of 255,170 participants aged 25–70 years were recruited in ten European countries (1992–2000) in the PANACEA study (Physical Activity, Nutrition, Alcohol, Cessation of smoking, Eating out of home in relation to Anthropometry), a sub-cohort of the EPIC (European Prospective Investigation into Cancer and Nutrition). Body weight was measured at recruitment and self-reported between 2 and 11 years later depending on the study center. A reference database for AGEs was used containing UPLC–MS/MS-measured Nε-(carboxymethyl)-lysine (CML), Nε-(1-carboxyethyl)-lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) in 200 common European foods. This reference database was matched to foods and decomposed recipes obtained from country-specific validated dietary questionnaires in EPIC and intake levels of CEL, CML, and MG-H1 were estimated. Associations between dietary AGEs intake and body weight change were estimated separately for each of the three AGEs using multilevel mixed linear regression models with center as random effect and dietary AGEs intake and relevant confounders as fixed effects.


A one-SD increment in CEL intake was associated with 0.111 kg (95% CI 0.087–0.135) additional weight gain over 5 years. The corresponding additional weight gain for CML and MG-H1 was 0.065 kg (0.041–0.089) and 0.034 kg (0.012, 0.057), respectively. The top six food groups contributing to AGEs intake, with varying proportions across the AGEs, were cereals/cereal products, meat/processed meat, cakes/biscuits, dairy, sugar and confectionary, and fish/shellfish.


In this study of European adults, higher intakes of AGEs were associated with marginally greater weight gain over an average of 5 years of follow-up.

This is a preview of subscription content, log in to check access.

Data availability

Data described in the manuscript, code book, and analytic code will be made available upon request pending application and approval. For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at:



Advanced glycation end products


Nε -1- Carboxyethyl-lysine




Dietary questionnaires


Dual-energy X-ray absorptiometry


European Prospective Investigation into Cancer and nutrition


Nδ-(5-Hydro-5-methyl-4-imidazolon-2-yl) ornithines


Modified relative Mediterranean Diet Score


Physical Activity, Nutrition, Alcohol, Cessation of smoking, Eating out of home in relation to Anthropometry


  1. 1.

    Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    World Health Organization-WHO (April, 2011) Global status report on noncommunicable diseases 2010.

  3. 3.

    Douketis JD, Macie C, Thabane L, Williamson DF (2005) Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int J Obes (Lond) 29(10):1153–1167.

    CAS  Article  Google Scholar 

  4. 4.

    Dombrowski SU, Knittle K, Avenell A, Araujo-Soares V, Sniehotta FF (2014) Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. BMJ 348:g2646.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hu FB (2008) Obesity epidemiology. Oxford University Press, Oxford

    Google Scholar 

  6. 6.

    De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L (2016) New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol 22(2):681–703.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Crino M, Sacks G, Vandevijvere S, Swinburn B, Neal B (2015) The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr Obes Rep 4(1):1–10.

    Article  PubMed  Google Scholar 

  8. 8.

    Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, Chung ST, Costa E, Courville A, Darcey V, Fletcher LA, Forde CG, Gharib AM, Guo J, Howard R, Joseph PV, McGehee S, Ouwerkerk R, Raisinger K, Rozga I, Stagliano M, Walter M, Walter PJ, Yang S, Zhou M (2019) Ultra-processed diets cause excess calorie intake and weight gain an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 30(1):67–77.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Scheijen J, Clevers E, Engelen L, Dagnelie PC, Brouns F, Stehouwer CDA, Schalkwijk CG (2016) Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: presentation of a dietary AGE database. Food Chem 190:1145–1150.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, Vlassara H (2004) Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 104(8):1287–1291.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, Skibsted LH, Dragsted LO (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Piperi C (2017) Dietary advanced glycation end-products: molecular mechanisms and preventive tools. Curr Nutr Rep 6(1):1–8.

    CAS  Article  Google Scholar 

  13. 13.

    Gaens KH, Stehouwer CD, Schalkwijk CG (2013) Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr Opin Lipidol 24(1):4–11.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kolb H, Stumvoll M, Kramer W, Kempf K, Martin S (2018) Insulin translates unfavourable lifestyle into obesity. BMC Med 16(1):232.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Wagner B, Guzmán-Ruiz M, Layritz C, Legutko B, Zinser E (2017) Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab 6(8):897–908.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci USA 109(39):15888–15893.

    Article  PubMed  Google Scholar 

  17. 17.

    Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ, Davidson BA, Khan A, Baker RD, Baker SS (2016) Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int 2016:7867852.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sowndhar Rajan B, Manivasagam S, Dhanusu S, Chandrasekar N, Krishna K, Kalaiarasu LP, Babu AA, Vellaichamy E (2018) Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: protective role of curcumin and gallic acid. Food Chem Toxicol 114:237–245.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Forbes JM, Sourris KC, de Courten MP, Dougherty SL, Chand V, Lyons JG, Bertovic D, Coughlan MT, Schlaich MP, Soldatos G, Cooper ME, Straznicky NE, Kingwell BA, de Courten B (2014) Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids 46(2):321–326.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J of Epidemiol 26((suppl 1)):S6–S14.

    Article  Google Scholar 

  21. 21.

    Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondiere UR, Hemon B, Casagrande C, Vignat J, Overvad K, Tjonneland A, Clavel-Chapelon F, Thiebaut A, Wahrendorf J, Boeing H, Trichopoulos D, Trichopoulou A, Vineis P, Palli D, Bueno-de-Mesquita HB, Peeters PHM, Lund E, Engeset D, Gonzalez CA, Barricarte A, Berglund G, Hallmans G, Day NE, Key TJ, Kaaks R, Saracci R (2002) European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr 5(6b):1113–1124.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obe 24(9):1119–1130.

    CAS  Article  Google Scholar 

  23. 23.

    Freisling H, van Bakel MME, Biessy C, May AM, Byrnes G, Norat T, Rinaldi S, de Magistris MS, Grioni S, Bueno-de-Mesquita HB, Ocke MC, Kaaks R, Teucher B, Vergnaud AC, Romaguera D, Sacerdote C, Palli D, Crowe FL, Tumino R, Clavel-Chapelon F, Boutron-Ruault MC, Khaw KT, Wareham NJ, Trichopoulou A, Naska A, Orfanos P, Boeing H, Illner AK, Riboli E, Peeters PH, Slimani N (2012) Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with BMI across six European countries as evaluated with recovery biomarkers for protein and potassium intake. Brit J Nutr 107(6):910–920.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Gottschald M, Knuppel S, Boeing H, Buijsse B (2016) The influence of adjustment for energy misreporting on relations of cake and cookie intake with cardiometabolic disease risk factors. Eur J Clin Nutr 70(11):1318–1324.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Vergnaud A, Norat T, Romaguera D, Mouw T, May A, Romieu I, Freisling H, Slimani N, Boutron-Ruault M, Clavel-Chapelon F (2011) Fruit and vegetable consumption and prospective weight change in participants of the European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home, and Obesity study. Am J Clin Nutr 95(1):184–193.

    Article  PubMed  Google Scholar 

  26. 26.

    Vergnaud A, Norat T, Romaguera D, Mouw T, May A, Travier N, Luan J, Wareham N, Slimani N, Rinaldi S (2010) Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am J Clin Nutr 92(2):398–407.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Spencer E, Appleby P, Davey G, Key T (2002) Validity of self-reported height and weight in 4808 EPIC–Oxford participants. Public Health Nutr 5(4):561–565.

    Article  PubMed  Google Scholar 

  28. 28.

    Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, Salvini S, Parpinel M, Moller A, Ireland J, Becker W, Farran A, Westenbrink S, Vasilopoulou E, Unwin J, Borgejordet A, Rohrmann S, Church S, Gnagnarella P, Casagrande C, van Bakel M, Niravong M, Boutron-Ruault MC, Stripp C, Tjonneland A, Trichopoulou A, Georga K, Nilsson S, Mattisson I, Ray J, Boeing H, Ocke M, Peeters PH, Jakszyn P, Amiano P, Engeset D, Lund E, de Magistris MS, Sacerdote C, Welch A, Bingham S, Subar AF, Riboli E (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61(9):1037–1056.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Buckland G, Gonzalez CA, Agudo A, Vilardell M, Berenguer A, Amiano P, Ardanaz E, Arriola L, Barricarte A, Basterretxea M, Chirlaque MD, Cirera L, Dorronsoro M, Egues N, Huerta JM, Larranaga N, Marin P, Martinez C, Molina E, Navarro C, Quiros JR, Rodriguez L, Sanchez MJ, Tormo MJ, Moreno-Iribas C (2009) Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am J Epidemiol 170(12):1518–1529.

    Article  PubMed  Google Scholar 

  30. 30.

    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558.

    Article  Google Scholar 

  31. 31.

    Romaguera D, Norat T, Vergnaud AC, Mouw T, May AM, Agudo A, Buckland G, Slimani N, Rinaldi S, Couto E, Clavel-Chapelon F, Boutron-Ruault MC, Cottet V, Rohrmann S, Teucher B, Bergmann M, Boeing H, Tjonneland A, Halkjaer J, Jakobsen MU, Dahm CC, Travier N, Rodriguez L, Sanchez MJ, Amiano P, Barricarte A, Huerta JM, Luan J, Wareham N, Key TJ, Spencer EA, Orfanos P, Naska A, Trichopoulou A, Palli D, Agnoli C, Mattiello A, Tumino R, Vineis P, Bueno-de-Mesquita HB, Buchner FL, Manjer J, Wirfalt E, Johansson I, Hellstrom V, Lund E, Braaten T, Engeset D, Odysseos A, Riboli E, Peeters PH (2010) Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am J Clin Nutr 92(4):912–921.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, Niamba CN, Alt N, Somoza V, Lecerf JM (2010) A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr 91(5):1220–1226.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    de Courten B, de Courten MP, Soldatos G, Dougherty SL, Straznicky N, Schlaich M, Sourris KC, Chand V, Scheijen JL, Kingwell BA, Cooper ME, Schalkwijk CG, Walker KZ, Forbes JM (2016) Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am J Clin Nutr 103(6):1426–1433.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Moraru A, Wiederstein J, Pfaff D, Fleming T, Miller AK, Nawroth P, Teleman AA (2018) Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of Type 2 diabetes. Cell Metab 27(4):926–934.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wisse BE, Schwartz MW (2009) Does hypothalamic inflammation cause obesity? Cell Metab 10(4):241–242.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Naska A, Lagiou A, Lagiou P (2017) Dietary assessment methods in epidemiological research: current state of the art and future prospects. F1000Res 6:926.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Palimeri S, Palioura E, Diamanti-Kandarakis E (2015) Current perspectives on the health risks associated with the consumption of advanced glycation end products: recommendations for dietary management. Diabetes Metab Syndr Obes 8:415–426.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sharma C, Kaur A, Thind SS, Singh B, Raina S (2015) Advanced glycation End-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol 52(12):7561–7576.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 94(12):6474–6479.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Scheijen JLJM, Hanssen NMJ, van Greevenbroek MM, van der Kallen CJ, Feskens EJM, Stehouwer CDA, Schalkwijk CG (2018) Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: the CODAM study. Clin Nutr 37(3):919–925.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Freisling H, Noh H, Slimani N, Chajes V, May AM, Peeters PH, Weiderpass E, Cross AJ, Skeie G, Jenab M, Mancini FR, Boutron-Ruault MC, Fagherazzi G, Katzke VA, Kuhn T, Steffen A, Boeing H, Tjonneland A, Kyro C, Hansen CP, Overvad K, Duell EJ, Redondo-Sanchez D, Amiano P, Navarro C, Barricarte A, Perez-Cornago A, Tsilidis KK, Aune D, Ward H, Trichopoulou A, Naska A, Orfanos P, Masala G, Agnoli C, Berrino F, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita HB, Ericson U, Sonestedt E, Winkvist A, Braaten T, Romieu I, Sabate J (2018) Nut intake and 5-year changes in body weight and obesity risk in adults: results from the EPIC-PANACEA study. Eur J Nutr 57(7):2399–2408.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Park JY, Mitrou PN, Keogh RH, Luben RN, Wareham NJ, Khaw KT (2012) Self-reported and measured anthropometric data and risk of colorectal cancer in the EPIC–Norfolk study. Int J Obes (Lond) 36(1):107.

    CAS  Article  Google Scholar 

  43. 43.

    Skeie G, Mode N, Henningsen M, Borch KB (2015) Validity of self-reported body mass index among middle-aged participants in the Norwegian Women and Cancer study. Clin Epidemiol 7:313–323.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Smith JD, Hou T, Hu FB, Rimm EB, Spiegelman D, Willett WC, Mozaffarian D (2015) A Comparison of different methods for evaluating diet, physical activity, and long-term weight gain in 3 prospective cohort studies. J Nutr 145(11):2527–2534.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank Petra H. Peeters and Anne M. May from the Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands, for coordinating the EPIC-Panacea study, and all EPIC participants and staff for their contribution to the study.


This work was partially financially supported by the World Cancer Research Fund International (WCRF, Grant No. 2015/1391, MJ, VK, and HF) and the Fondation de France (FDF, Grant No. 00081166, HF, and FDF Grant No. 00089811, ALMC). The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the following funders: Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF) (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland),World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS-ISCIII), the Regional Governments of Andalucía, Asturias, Basque Country, Murcia, Navarra, and the Catalan Institute of Oncology (Barcelona), Spain); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (UK).

Author information




Heinz Freisling and Mazda Jenab developed the overall research plan; Viktoria Knaze and Reynalda Cordova performed the data matching; Casper G. Schalkwijk provided the AGEs database; Reynalda Cordova conducted the statistical analyses. Vivian Viallon contributed to the statistical analyses; Reynalda Cordova and Heinz Freisling wrote the manuscript; Heinz Freisling supervised the data analysis, reviewed/edited the manuscript, and had primary responsibility for final content; and all authors: contributed substantially to data collection, the interpretation of data, and the drafting or critical revision of the manuscript for important intellectual content. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization.

Corresponding author

Correspondence to Heinz Freisling.

Ethics declarations

Conflict of interest

None of the authors declared a conflict of interest.

Ethics approval

The present study was approved by the ethics committees of the IARC and the individual study centers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 725 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cordova, R., Knaze, V., Viallon, V. et al. Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. Eur J Nutr 59, 2893–2904 (2020).

Download citation


  • Dietary advanced glycation end products
  • Weight change
  • Obesity
  • Adults
  • Europe