Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle

Abstract

Purpose

Recent investigations have established that the ingestion of a moderate dose of caffeine (3–6 mg kg−1) can increase exercise and sports performance in women. However, it is unknown whether the ergogenicity of caffeine is similar during all phases of the menstrual cycle. The aim of this investigation was to determine the ergogenic effects of caffeine in three phases of the menstrual cycle.

Methods

Thirteen well-trained eumenorrheic triathletes (age = 31 ± 6 years; body mass = 58.6 ± 7.8 kg) participated in a double-blind, cross-over, randomised experimental trial. In the (1) early follicular (EF); (2) preovulation (PO); (3) and mid luteal (ML) phases, participants either ingested a placebo (cellulose) or 3 mg kg−1 of caffeine in an opaque and unidentifiable capsule. After a 60-min wait for substance absorption, participants performed an incremental maximal cycle ergometer test until volitional fatigue (25 W/min) to assess peak aerobic cycling power (Wmax).

Results

In comparison to the placebo, caffeine increased Wmax in the EF (4.13 ± 0.69 vs. 4.24 ± 0.71 W kg−1, Δ = 2.7 ± 3.3%, P = 0.01), in the PO (4.14 ± 0.70 vs. 4.27 ± 0.73 W kg−1, Δ = 3.3 ± 5.0%; P = 0.03) and in the ML (4.15 ± 0.69 vs. 4.29 ± 0.67 W kg−1, Δ = 3.6 ± 5.1%; P = 0.01) phases. The magnitude of the caffeine ergogenic effect was similar during all of the menstrual cycle phases (P = 0.85).

Conclusion

Caffeine increased peak aerobic cycling power in the early follicular, preovulatory, and mid luteal phases. Thus, the ingestion of 3 mg of caffeine per kg of body mass might be considered an ergogenic aid for eumenorrheic women during all three phases of the menstrual cycle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Souza DB, Del Coso J, Casonatto J, Polito MD (2017) Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr 56(1):13–27. https://doi.org/10.1007/s00394-016-1331-9

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Glaister M, Gissane C (2018) Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform 13(4):402–411. https://doi.org/10.1123/ijspp.2017-0312

    Article  PubMed  Google Scholar 

  3. 3.

    Grgic J (2018) Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci 18(2):219–225. https://doi.org/10.1080/17461391.2017.1394371

    Article  PubMed  Google Scholar 

  4. 4.

    Salinero JJ, Lara B, Del Coso J (2018) Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sports Med. https://doi.org/10.1080/15438627.2018.1552146

    Article  PubMed  Google Scholar 

  5. 5.

    Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42(7):1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Conger SA, Warren GL, Hardy MA, Millard-Stafford ML (2011) Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab 21(1):71–84

    CAS  Article  Google Scholar 

  7. 7.

    Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z (2019) Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med. https://doi.org/10.1136/bjsports-2018-100278

    Article  PubMed  Google Scholar 

  8. 8.

    Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L (2018) IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 52(7):439–455. https://doi.org/10.1136/bjsports-2018-099027

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Salinero JJ, Lara B, Jimenez-Ormeno E, Romero-Moraleda B, Giraldez-Costas V, Baltazar-Martins G, Del Coso J (2019) More research is necessary to establish the ergogenic effect of caffeine in female athletes. Nutrients. https://doi.org/10.3390/nu11071600

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fett CA, Aquino NM, Schantz Junior J, Brandao CF, de Araujo Cavalcanti JD, Fett WC (2018) Performance of muscle strength and fatigue tolerance in young trained women supplemented with caffeine. J Sports Med Phys Fit 58(3):249–255. https://doi.org/10.23736/s0022-4707.17.06615-4

    CAS  Article  Google Scholar 

  11. 11.

    Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J (2010) Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr 7:18. https://doi.org/10.1186/1550-2783-7-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Astorino TA, Roupoli LR, Valdivieso BR (2012) Caffeine does not alter RPE or pain perception during intense exercise in active women. Appetite 59(2):585–590. https://doi.org/10.1016/j.appet.2012.07.008

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lara B, Gonzalez-Millan C, Salinero JJ, Abian-Vicen J, Areces F, Barbero-Alvarez JC, Munoz V, Portillo LJ, Gonzalez-Rave JM, Del Coso J (2014) Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 46(5):1385–1392. https://doi.org/10.1007/s00726-014-1709-z

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Del Coso J, Portillo J, Munoz G, Abian-Vicen J, Gonzalez-Millan C, Munoz-Guerra J (2013) Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 44(6):1511–1519. https://doi.org/10.1007/s00726-013-1473-5

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Perez-Lopez A, Salinero JJ, Abian-Vicen J, Valades D, Lara B, Hernandez C, Areces F, Gonzalez C, Del Coso J (2015) Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc 47(4):850–856. https://doi.org/10.1249/MSS.0000000000000455

    Article  PubMed  Google Scholar 

  16. 16.

    Skinner TL, Desbrow B, Arapova J, Schaumberg MA, Osborne J, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001885

    Article  PubMed  Google Scholar 

  17. 17.

    Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, Zemski AJ, Burke LM (2014) Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab 39(9):1050–1057. https://doi.org/10.1139/apnm-2013-0336

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Puente C, Abian-Vicen J, Salinero JJ, Lara B, Areces F, Del Coso J (2017) Caffeine improves basketball performance in experienced basketball players. Nutrients 9:9. https://doi.org/10.3390/nu9091033

    CAS  Article  Google Scholar 

  19. 19.

    Prins PJ, Goss FL, Nagle EF, Beals K, Robertson RJ, Lovalekar MT, Welton GL (2016) Energy drinks improve five-kilometer running performance in recreational endurance runners. J Strength Cond Res 30(11):2979–2990. https://doi.org/10.1519/jsc.0000000000001391

    Article  PubMed  Google Scholar 

  20. 20.

    Abian P, Del Coso J, Salinero JJ, Gallo-Salazar C, Areces F, Ruiz-Vicente D, Lara B, Soriano L, Munoz V, Abian-Vicen J (2015) The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J Sports Sci 33(10):1042–1050. https://doi.org/10.1080/02640414.2014.981849

    Article  PubMed  Google Scholar 

  21. 21.

    Gallo-Salazar C, Areces F, Abian-Vicen J, Lara B, Salinero JJ, Gonzalez-Millan C, Portillo J, Munoz V, Juarez D, Del Coso J (2015) Enhancing physical performance in elite junior tennis players with a caffeinated energy drink. Int J Sports physiol Perform 10(3):305–310. https://doi.org/10.1123/ijspp.2014-0103

    Article  PubMed  Google Scholar 

  22. 22.

    Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J (2019) Time course of tolerance to the performance benefits of caffeine. PLoS One 14(1):e0210275. https://doi.org/10.1371/journal.pone.0210275

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sabblah S, Dixon D, Bottoms L (2015) Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol 11(2):89–94. https://doi.org/10.3920/CEP150010

    Article  Google Scholar 

  24. 24.

    Bruinvels G, Burden RJ, McGregor AJ, Ackerman KE, Dooley M, Richards T, Pedlar C (2017) Sport, exercise and the menstrual cycle: where is the research? Br J Sports Med 51(6):487–488. https://doi.org/10.1136/bjsports-2016-096279

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kamimori GH, Joubert A, Otterstetter R, Santaromana M, Eddington ND (1999) The effect of the menstrual cycle on the pharmacokinetics of caffeine in normal, healthy eumenorrheic females. Eur J Clin Pharmacol 55(6):445–449

    CAS  Article  Google Scholar 

  26. 26.

    McLean C, Graham TE (2002) Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J Appl Physiol (Bethesda, Md: 1985) 93(4):1471–1478. https://doi.org/10.1152/japplphysiol.00762.2000

    CAS  Article  Google Scholar 

  27. 27.

    Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562. https://doi.org/10.1080/1040-830491379245

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Schliep KC, Schisterman EF, Wactawski-Wende J, Perkins NJ, Radin RG, Zarek SM, Mitchell EM, Sjaarda LA, Mumford SL (2016) Serum caffeine and paraxanthine concentrations and menstrual cycle function: correlations with beverage intakes and associations with race, reproductive hormones, and anovulation in the BioCycle Study. Am J Clin Nutr 104(1):155–163. https://doi.org/10.3945/ajcn.115.118430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Arnaud MJ (2011) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp Pharmacol 200:33–91. https://doi.org/10.1007/978-3-642-13443-2_3

    CAS  Article  Google Scholar 

  30. 30.

    Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 78(4):400–411. https://doi.org/10.1016/j.clpt.2005.06.009

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Temple JL, Ziegler AM (2011) Gender differences in subjective and physiological responses to caffeine and the role of steroid hormones. J Caffeine Res 1(1):41–48. https://doi.org/10.1089/jcr.2011.0005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Temple JL, Ziegler AM, Martin C, de Wit H (2015) Subjective responses to caffeine are influenced by caffeine dose, sex, and pubertal stage. J Caffeine Res 5(4):167–175. https://doi.org/10.1089/jcr.2015.0022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Temple JL, Ziegler AM, Graczyk A, Bendlin A, Sion T, Vattana K (2014) Cardiovascular responses to caffeine by gender and pubertal stage. Pediatrics 134(1):e112–119. https://doi.org/10.1542/peds.2013-3962

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, Maciel E, Artioli GG, Roschel H, Gualano B (2017) Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (Bethesda, Md: 1985) 123(1):213–220. https://doi.org/10.1152/japplphysiol.00260.2017

    CAS  Article  Google Scholar 

  35. 35.

    Janse de Jonge XA (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33(11):833–851. https://doi.org/10.2165/00007256-200333110-00004

    Article  PubMed  Google Scholar 

  36. 36.

    Burke LM, Hawley JA, Wong SH, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29(Suppl 1):S17–27. https://doi.org/10.1080/02640414.2011.585473

    Article  PubMed  Google Scholar 

  37. 37.

    McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, Kenney WL, O’Connor FG, Roberts WO (2017) National athletic trainers’ association position statement: fluid replacement for the physically active. J Athl Train 52(9):877–895. https://doi.org/10.4085/1062-6050-52.9.02

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ganio MS, Johnson EC, Klau JF, Anderson JM, Casa DJ, Maresh CM, Volek JS, Armstrong LE (2011) Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol 111(6):1135–1146. https://doi.org/10.1007/s00421-010-1734-x

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Edvardsen E, Hem E, Anderssen SA (2014) End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS One 9(1):e85276. https://doi.org/10.1371/journal.pone.0085276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Salinero JJ, Lara B, Abian-Vicen J, Gonzalez-Millan C, Areces F, Gallo-Salazar C, Ruiz-Vicente D, Del Coso J (2014) The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr 112(9):1494–1502. https://doi.org/10.1017/s0007114514002189

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57

    Article  Google Scholar 

  42. 42.

    Jurkowski JE, Jones NL, Toews CJ, Sutton JR (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51(6):1493–1499. https://doi.org/10.1152/jappl.1981.51.6.1493

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Gordon D, Scruton A, Barnes R, Baker J, Prado L, Merzbach V (2018) The effects of menstrual cycle phase on the incidence of plateau at V O2max and associated cardiorespiratory dynamics. Clin Physiol Funct Imaging 38(4):689–698. https://doi.org/10.1111/cpf.12469

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bemben DA, Salm PC, Salm AJ (1995) Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fit 35(4):257–262

    CAS  Google Scholar 

  45. 45.

    Pickering C, Kiely J (2018) Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med 48(1):7–16. https://doi.org/10.1007/s40279-017-0776-1

    Article  PubMed  Google Scholar 

  46. 46.

    Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ (2008) Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab 18(3):328–342

    CAS  Article  Google Scholar 

  47. 47.

    Puente C, Abian-Vicen J, Del Coso J, Lara B, Salinero JJ (2018) The CYP1A2 -163C > A polymorphism does not alter the effects of caffeine on basketball performance. PLoS One 13(4):e0195943. https://doi.org/10.1371/journal.pone.0195943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Salinero JJ, Lara B, Ruiz-Vicente D, Areces F, Puente-Torres C, Gallo-Salazar C, Pascual T, Del Coso J (2017) CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. https://doi.org/10.3390/nu9030269

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Grgic J (2018) Are there non-responders to the ergogenic effects of caffeine ingestion on exercise performance? Nutrients 10:11. https://doi.org/10.3390/nu10111736

    Article  Google Scholar 

  50. 50.

    Takeda T, Imoto Y, Nagasawa H, Muroya M, Shiina M (2015) Premenstrual syndrome and premenstrual dysphoric disorder in Japanese collegiate athletes. J Pediatr Adolesc Gynecol 28(4):215–218. https://doi.org/10.1016/j.jpag.2014.07.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the participants for their invaluable contribution to this research effort at investigating the effects of caffeine on female athletes. The authors are also very grateful to the Spanish Triathlon Federation for their support and help in the recruitment process.

Funding

The study was part of the CAFTRI project supported by a grant from the Spanish National Sports Council conceded to the Spanish Triathlon Federation, which covered the expenses necessary to carry out this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Del Coso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest derived from the outcomes of this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lara, B., Gutiérrez-Hellín, J., García-Bataller, A. et al. Ergogenic effects of caffeine on peak aerobic cycling power during the menstrual cycle. Eur J Nutr 59, 2525–2534 (2020). https://doi.org/10.1007/s00394-019-02100-7

Download citation

Keywords

  • Ergogenicity
  • Stimulant
  • Exercise
  • Women
  • Sex
  • Physical activity