Advertisement

Spondylarthritiden

  • U. Syrbe
  • X. Baraliakos
Leitthema

Zusammenfassung

Die Spondylarthritiden (SpA) sind charakterisiert durch Entzündungen im Bereich axialer Gelenke und/oder periphere Arthritiden, Enthesitiden und Daktylitiden. Die Krankheitsentstehung ist stark genetisch bestimmt und insbesondere mit dem Vorhandensein von HLA-B27 assoziiert. Die transgene Expression von HLA-B27 im Tiermodell führt zur Induktion eines SpA-ähnlichen Krankheitsbilds, was einen direkten Einfluss von HLA-B27 auf die Krankheitsentwicklung nahelegt. Genomweite Assoziationsstudien von SpA-Patienten haben weitere Assoziationen mit Polymorphismen in Genen mit Immunfunktionen, insbesondere Genen, die den Interleukin(IL)-23/IL-17-Signalweg kontrollieren, identifiziert. Die Wirksamkeit von IL-17-Inhibitoren bei SpA-Patienten belegt die Bedeutung dieses Signalwegs für diese Erkrankung. Ein Großteil der Patienten mit SpA weist zusätzlich eine mikroskopische Darmentzündung oder eine chronisch-entzündliche Darmerkrankung auf, was auf einen Einfluss der Darmflora auf die Pathogenese hindeutet. Histopathologisch findet sich bei axialen Manifestationen ein Ersatz des subchondralen Knochenmarks durch ein Granulationsgewebe mit destruierenden und reparativen Eigenschaften. Wie genetische Prädisposition und Darmentzündung zu Entzündungsreaktionen an mechanisch belasteten Regionen führen, ist Gegenstand der gegenwärtigen Forschung.

Schlüsselwörter

Ankylosierende Spondylitis HLA-B27 Interleukin 17 Interleukin 23 Signalwege 

Spondyloarthritis

Abstract

Spondyloarthritis (SpA) describes the group of inflammatory diseases characterized by inflammation within axial joints and/or peripheral arthritis, enthesitis, and dactylitis. Disease development is strongly determined by genes and particularly associated with the presence of HLA-B27. Transgenic expression in animal models leads to induction of a SpA-like disease, suggesting a direct effect of HLA-B27 on disease development. Genome-wide association studies in SpA patients have identified further associations between polymorphisms in genes with an immune function, in particular in genes controlling the interleukin (IL)-23/IL-17 signaling pathway. The efficacy of IL-17 inhibitors in SpA patients underscores the impact of this pathway in this disease. Microscopic gut inflammation or chronic inflammatory bowel disease is found in the majority of patients with SpA, suggesting a pathogenic impact of commensal microbiota. In histopathologic examinations of axial manifestations, replacement of the subchondral bone marrow by granulation tissue with bone destructive and reparative properties is found. The mechanisms governing how genetic predisposition and gut inflammation promote inflammatory reactions at sites of mechanical stress is a matter of current research.

Keywords

Ankylosing spondylitis HLA-B27 Interleukin-17 Interleukin-23 Signal pathways 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

U. Syrbe und X. Baraliakos geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369(9570):1379–1390CrossRefPubMedGoogle Scholar
  2. 2.
    Stolwijk C, van Tubergen A, Castillo-Ortiz JD, Boonen A (2013) Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis.  https://doi.org/10.1136/annrheumdis-2013-203582 CrossRefPubMedGoogle Scholar
  3. 3.
    Ez-Zaitouni Z, Bakker PAC, van Lunteren M, Berg IJ, Landewe R, van Oosterhout M et al (2017) Presence of multiple spondyloarthritis (SpA) features is important but not sufficient for a diagnosis of axial spondyloarthritis: data from the SPondyloArthritis Caught Early (SPACE) cohort. Ann Rheum Dis 76(6):1086–1092CrossRefPubMedGoogle Scholar
  4. 4.
    Braun J, Brandt J, Listing J, Zink A, Alten R, Golder W et al (2002) Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 359(9313):1187–1193CrossRefPubMedGoogle Scholar
  5. 5.
    Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D et al (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet.  https://doi.org/10.1016/S0140-6736(13)61134-4 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al (1997) Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 40(10):1823–1828CrossRefPubMedGoogle Scholar
  7. 7.
    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63(5):1099–1112CrossRefPubMedGoogle Scholar
  8. 8.
    Alvarez I, Sesma L, Marcilla M, Ramos M, Marti M, Camafeita E et al (2001) Identification of novel HLA-B27 ligands derived from polymorphic regions of its own or other class I molecules based on direct generation by 20 S proteasome. J Biol Chem 276(35):32729–32737CrossRefPubMedGoogle Scholar
  9. 9.
    Taurog JD, Dorris ML, Satumtira N, Tran TM, Sharma R, Dressel R et al (2009) Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum 60(7):1977–1984CrossRefPubMedGoogle Scholar
  10. 10.
    Colbert RA (2004) The immunobiology of HLA-B27: variations on a theme. Curr Mol Med 4(1):21–30CrossRefPubMedGoogle Scholar
  11. 11.
    Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A et al (2002) Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 46(11):2972–2982CrossRefPubMedGoogle Scholar
  12. 12.
    Mear JP, Schreiber KL, Munz C, Zhu X, Stevanovic S, Rammensee HG et al (1999) Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670PubMedGoogle Scholar
  13. 13.
    Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium, Burton PR, Clayton DG, Cardon LR, Craddock N et al (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39(11):1329–1337CrossRefGoogle Scholar
  14. 14.
    Robinson PC, Costello ME, Leo P, Bradbury LA, Hollis K, Cortes A et al (2015) ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann Rheum Dis 74(8):1627–1629CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G et al (2011) Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 43(8):761–767CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD (2012) Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis 71(4):589–595CrossRefPubMedGoogle Scholar
  17. 17.
    Tran TM, Colbert RA (2015) Endoplasmic reticulum aminopeptidase 1 and rheumatic disease: functional variation. Curr Opin Rheumatol 27(4):357–363CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sarin R, Wu X, Abraham C (2011) Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T‑cell functional responses. Proc Natl Acad Sci USA 108(23):9560–9565CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B et al (2016) Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 48(5):510–518CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4−CD8− entheseal resident T cells. Nat Med 18(7):1069–1076CrossRefPubMedGoogle Scholar
  21. 21.
    Hanson A, Brown MA (2017) Genetics and the causes of ankylosing spondylitis. Rheum Dis Clin North Am 43(3):401–414CrossRefPubMedGoogle Scholar
  22. 22.
    Granfors K, Jalkanen S, von Essen R, Lahesmaa-Rantala R, Isomaki O, Pekkola-Heino K et al (1989) Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 320(4):216–221CrossRefPubMedGoogle Scholar
  23. 23.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL et al (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180(6):2359–2364CrossRefPubMedGoogle Scholar
  24. 24.
    Van Praet L, Van den Bosch FE, Jacques P, Carron P, Jans L, Colman R et al (2013) Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis 72(3):414–417CrossRefPubMedGoogle Scholar
  25. 25.
    Syrbe U, Scheer R, Wu P, Sieper J (2012) Differential synovial Th1 cell reactivity towards Escherichia coli antigens in patients with ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 71(9):1573–1576CrossRefPubMedGoogle Scholar
  26. 26.
    Cruickshank B (1956) Lesions of cartilaginous joints in ankylosing spondylitis. J Pathol Bacteriol 71(1):73–84CrossRefPubMedGoogle Scholar
  27. 27.
    Bleil J, Maier R, Hempfing A, Schlichting U, Appel H, Sieper J et al (2014) Histomorphological and histomorphometric characteristics of zygapophyseal joint remodelling in ankylosing spondylitis. Arthritis Rheumatol.  https://doi.org/10.1002/art.38404 PubMedCrossRefGoogle Scholar
  28. 28.
    Bleil J, Maier R, Hempfing A, Sieper J, Appel H, Syrbe U (2016) Granulation tissue eroding the subchondral bone also promotes new bone formation in ankylosing spondylitis. Arthritis Rheumatol 68(10):2456–2465CrossRefPubMedGoogle Scholar
  29. 29.
    Gong Y, Zheng N, Chen SB, Xiao ZY, Wu MY, Liu Y et al (2012) Ten years’ experience with needle biopsy in the early diagnosis of sacroiliitis. Arthritis Rheum 64(5):1399–1406CrossRefPubMedGoogle Scholar
  30. 30.
    Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H et al (1995) Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 38(4):499–505CrossRefPubMedGoogle Scholar
  31. 31.
    Appel H, Maier R, Bleil J, Hempfing A, Loddenkemper C, Schlichting U et al (2013) In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum 65(6):1522–1529CrossRefPubMedGoogle Scholar
  32. 32.
    Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R et al (2011) Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 13(3):R95CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik für Gastroenterologie, Infektiologie und RheumatologieCharité – Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinDeutschland
  2. 2.MVZ Medicover Berlin-MitteBerlinDeutschland
  3. 3.Rheumazentrum Ruhrgebiet HerneRuhr-Universität BochumBochumDeutschland

Personalised recommendations