Advertisement

Zeitschrift für Rheumatologie

, Volume 77, Issue 5, pp 379–384 | Cite as

Sarkopenie und Frailty beim älteren Rheumapatienten

  • U. Lange
Leitthema
  • 165 Downloads

Zusammenfassung

Sarkopenie, die bei bis zu 50 % der über 80-Jährigen vorkommt, ist eine altersassoziierte Erkrankung, gekennzeichnet durch einen kombinierten Verlust an Muskelmasse, -kraft und -leistung. Die Folgen sind vielfältig, wobei die Sarkopenie eng mit der Gebrechlichkeit (Frailty) verknüpft ist. Zu den wichtigen Risikofaktoren zählen genetische/epigenetische Faktoren, Immobilisation, Fehl- und Mangelernährung, Hormonmangelzustände, chronische Entzündung und ein Anstieg der inhibitorischen Faktoren der Geweberegeneration. Jenseits einer Quantifizierung der Muskelmasse sind daher funktionelle Untersuchungen zentraler Bestandteil der Sarkopeniediagnostik. Aktuell wird eine ganze Reihe an Interventionsstrategien getestet, so u. a. Trainingsregimes, Ernährungsprogramme, Hormonersatztherapien sowie pharmakologische Ansätze mit anabolen Prinzipien. Nach der aktuellen Datenlage kommt Trainingsprogrammen und Medikamenten ein hohes Potenzial zu.

Schlüsselwörter

Diagnostik Prophylaxe Therapie Risikofaktoren Muskelmasse 

Sarcopenia and frailty in older patients with rheumatism

Abstract

Sarcopenia is an age-related generalized loss of muscle mass and muscle strength resulting in low physical performance, which can be observed in up to 50% of >80-year-old individuals. The consequences are manifold and sarcopenia is closely linked to frailty. Important risk factors are genetics/epigenetics, immobilization, malnutrition and anorexia, hormone deficiencies, chronic inflammation and raised levels of inhibitory factors of tissue regeneration. Thus, functional assessment of muscle strength and physical performance are central components of diagnosing sarcopenia, beyond the mere quantification of muscle mass. Currently, many interventional strategies are being tested, including exercise regimens, nutrition programs, hormone replacement and pharmacological strategies involving anabolic principles. According to the current data, training programs and medications have a high potential.

Keywords

Diagnostics Prophylaxis Therapy Risk factors Muscle mass 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

U. Lange gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Falle von nichtmündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor.

Literatur

  1. 1.
    Spira D, Norman K, Nikolov J et al (2016) Prevalence and definition of sarcopenia in community dwelling older people. Data from the Berlin aging study II (BASE-II). Z Gerontol Geriatr 49:94–99CrossRefPubMedGoogle Scholar
  2. 2.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working groups on sarkopenia in older people. Age Ageing 39:412–423CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43:748–759CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256CrossRefPubMedGoogle Scholar
  5. 5.
    Studenski SA, Peter KW, Alley DE et al (2014) The FNIH sarcopenia project: ratinale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kemmler W, Jakob F, Sieber C (2017) Sarkopenie. Pathophysiologie und Therapie. Osteologie 26:7–12CrossRefGoogle Scholar
  7. 7.
    Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57:M772–7CrossRefPubMedGoogle Scholar
  8. 8.
    Gariballa S, Alessa A (2013) Sarcopenia, prevalence and prognostic significance in hospitalized patients. Clin Nutr 32:772–776CrossRefPubMedGoogle Scholar
  9. 9.
    Smoliner C, Sieber CC, Wirth R (2014) Prevalence of sarcopenia in geriatric hospitalized patients. J Am Med Dir Assoc 15:267–272CrossRefPubMedGoogle Scholar
  10. 10.
    Landi F, Liperoti R, Fusco D et al (2012) Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc 13:121–126CrossRefPubMedGoogle Scholar
  11. 11.
    Ngeuleu A, Allali F, Medrare L et al (2017) Sarcopenia in rheumatoid arthritis: prevalence, influence of disease activity and associated factors. Rheumatol Int 37:1015–1020CrossRefPubMedGoogle Scholar
  12. 12.
    Rolland Y, Czerwinski S, Abellan von Kann G et al (2008) Sarcopenia: Its assessment, etiology, pathogenesis, consequences and further perspectives. J Nutr Health Aging 12:433–450CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beaudart C, Zaaria M, Pasleau F et al (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE 12:e169548CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xue QL (2011) The frailty syndrome: definition and natural history. Clin Geriatr Med 27:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fairhall N, Aggar C, Kurrle E et al (2008) Frailty Interventional Trial (FIT). BMC Geriatr 8:27CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lakomek H‑J, Brabant T, Lakomek M, Lüttje D (2013) Multimorbidität bei älteren Rheumapatienten Teil 1. Z Rheumatol 72:530–538CrossRefPubMedGoogle Scholar
  17. 17.
    Andrews JS, Trupin L, Yelin EH et al (2017) Frailty and reduced physical function go hand in hand in adults with rheumatoid arthritis: a US observational cohort study. Clin Rheumatol 36:1031–1039CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hoganson DD, Crowson CS, Warrington KJ et al (2010) Lack of association of high body mass index with risk for developing Polymyalgia rheumatica. Int J Rheum Dis 13:e1–e5CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Björkman MP, Tilvis RS (2010) Muscle functions in polymyalgia rheumatica and giant-cell arteritis. Healthy Aging Clin Care Elder 2:1–8CrossRefGoogle Scholar
  20. 20.
    Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91:1123S–1127SCrossRefPubMedGoogle Scholar
  21. 21.
    Baumgartner RN, Waters DL, Gallagher D et al (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–126CrossRefPubMedGoogle Scholar
  22. 22.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896CrossRefPubMedGoogle Scholar
  23. 23.
    Genest SLF (2017) Funktionsdiagnostik der Sarkopenie. Osteologie 26:13–17CrossRefGoogle Scholar
  24. 24.
    Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefPubMedGoogle Scholar
  25. 25.
    Stewart VH, Saunders DH, Greig CA (2014) Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand J Med Sci Sports 24:e1–e10CrossRefPubMedGoogle Scholar
  26. 26.
    Guigoz Y, Yellas B, Garry PJ (1996) Assessing the nutritional status of the elderly: the mini nutritional assessment as part of the geriatric evaluation. Nutr Rev 54:59–64CrossRefGoogle Scholar
  27. 27.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promissing therapies. Nat Rev Drug Discov 14:58–74CrossRefPubMedGoogle Scholar
  28. 28.
    Campins L, Camps M, Riera A et al (2016) Oral drugs related with muscle wasting and sarcopenia. A review. Pharmacology 99:1–8CrossRefPubMedGoogle Scholar
  29. 29.
    Peterson MD, Rhea MR, Sen A et al (2010) Resistance exercise for muscular strength in older adults: a metaanalysis. Ageing Res Rev 9:226–237CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Borde R, Hartobagyi T, Granacher U (2015) Dose-response relationship of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med 45:1693–1720CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43:249–258CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pennings B, Koopman R, Beelen M et al (2011) Exercise before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscular protein synthesis in both young and elderly men. Am J Clin Nutr 93:322–331CrossRefPubMedGoogle Scholar
  33. 33.
    Bud NA, Gorissen SH, van Loon LJ (2013) Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev 41:169–173CrossRefGoogle Scholar
  34. 34.
    Hickson M (2015) Nutritional interventions in sarcopenia: a critical review. Proc Nutr Soc 74:378–386CrossRefPubMedGoogle Scholar
  35. 35.
    Denison HJ, Cooper C, Sayer AA et al (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscular outcomes in older people. Clin Interv Aging 10:859–869PubMedPubMedCentralGoogle Scholar
  36. 36.
    Cermak NM, Res PT, de Groot LC et al (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Biomed Res Int 96:1454–1464Google Scholar
  37. 37.
    Finger D, Goltz FR, Umpierre D et al (2015) Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis. Sports Med 45:245–255CrossRefPubMedGoogle Scholar
  38. 38.
    Bauer J, Biolo G, Cederholm T et al (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14:542–559CrossRefPubMedGoogle Scholar
  39. 39.
    Deutz NE, Bauer JM, al Barazzoni Ret (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 33:929–936CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pennings B, Boirie Y, Senden JM et al (2011) Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 93:997–1005CrossRefPubMedGoogle Scholar
  41. 41.
    Duan Y, Li F, Li Y et al (2015) The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 48:41–54CrossRefPubMedGoogle Scholar
  42. 42.
    Breen L, Philipps SM (2011) Skeletal muscle protein metabolism in the elderly: Interventions to counteract the „anabolic resistance“ of aging. Nutr Metab 8:68CrossRefGoogle Scholar
  43. 43.
    Pennings B, Koopman R, Beelen M et al (2011) Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. Am J Clin Nutr 93:322–331CrossRefPubMedGoogle Scholar
  44. 44.
    Burd NA, Gorissen SH, van Loon LJ (2013) Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev 41:169–173CrossRefPubMedGoogle Scholar
  45. 45.
    Fitschen PJ, Wilson GJ, Wilson JM et al (2013) Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in elderly and clinical populations. Nutrition 29:29–36CrossRefPubMedGoogle Scholar
  46. 46.
    Deutz NE, Pereira SL, Hays NP et al (2013) Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr 32:704–712CrossRefPubMedGoogle Scholar
  47. 47.
    Vukovic MD, Stubbs NB, Bohlken RM (2011) Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methlybutyrate similarly to that of young adults. J Nutr 131:2049–2052CrossRefGoogle Scholar
  48. 48.
    Flakoll P, Sharp R, Baier S et al (2004) Effect of beta-hydroxy-beta-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition 20:445–451CrossRefPubMedGoogle Scholar
  49. 49.
    Di Girolamo FG, Situlin R, Mazzucco S et al (2014) Omega-3 fatty acids and protein metabolisms: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care 17:145–150CrossRefPubMedGoogle Scholar
  50. 50.
    Annweiler C, Schott AM, Berrut G et al (2009) Vitamin D‑related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898CrossRefPubMedGoogle Scholar
  51. 51.
    Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59:2291–2300CrossRefPubMedGoogle Scholar
  52. 52.
    Cesari M, Pahor M, Bartali B et al (2004) Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr 79:289–294CrossRefPubMedGoogle Scholar
  53. 53.
    Lauretani F, Semba RD, Bandinelli S et al (2008) Low plasma carotenoids and skeletal muscle strength decline over 6 years. J Gerontol A Biol Sci Med Sci 63:376–383CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung Rheumatologie und klinische Immunologie, Kerkhoff-KlinikJustus-Liebig-Universität GießenBad NauheimDeutschland

Personalised recommendations