Size matters: observations regarding the sonographic double contour sign in different joint sizes in acute gouty arthritis

  • C. Löffler
  • H. Sattler
  • U. Löffler
  • B. K. Krämer
  • R. Bergner
Originalien
  • 47 Downloads

Abstract

Objective

In distinguishing urate arthritis (UA) from non-crystal-related arthritides, joint sonography including the detection of the double contour sign (DCS) and hypervascularization using power Doppler ultrasound (PDUS) is an important step in the diagnostic process. But are these sonographic features equally reliable in every accessible joint under real-life conditions?

Methods

We retrospectively analyzed 362 patients with acute arthritis and evaluated the DCS and the degree of PDUS hypervascularization in patients with gout and in those with arthritis other than urate arthritis (non-UA). We classified all joints into the groups small, medium, and large. Sensitivities, specificities, positive and negative predictive values (PPV/NPV), and a binary regression model were calculated. We also evaluated the influence of serum uric acid levels (SUA) on the presence of a DCS in each joint category.

Results

Sensitivity of the DCS in gout was 72.5% in the entire cohort, 66.0% in large, 78.8% in medium, and 72.3% in small joints. In wrist joints the DCS sensitivity maxed at 83.3%, with a specificity of 81.8%. The lowest rates of DCS sensitivity were found in gout patients with elbow joint involvement (42.9%). In all joints except metatarsophalangeal joint 1 (MTP-1), the incidence of a DCS increased by the increment of SUA levels above 7.5 mg/dl (p < 0.001). PDUS signals were most commonly found in medium and small joints and were only scarce in large joints, independent of the underlying diagnosis.

Conclusions

In our study we detected different rates of accuracy regarding DCS and PDUS in patients with acute arthritis. The best results were seen in medium-size joints, especially wrists.

Keywords

Gout Urate arthritis Double contour sign Ultrasound Joint 

Die Größe macht den Unterschied: Beobachtungen zum sonographischen Doppelkonturzeichen in unterschiedlichen Gelenken bei akuter Gichtarthritis

Zusammenfassung

Ziel

Bei der Unterscheidung zwischen Gichtarthritis und nichtkristallassoziierten Arthritiden ist die Arthrosonographie zur Detektion des Doppelkonturzeichens (DCS) und der Hypervaskularisation im Power-Doppler-Ultraschall (PDUS) ein wichtiger Schritt im diagnostischen Prozess. Aber sind diese sonographischen Zeichen unter Alltagsbedingungen gleichsam zuverlässig in allen untersuchbaren Gelenken?

Methoden

Retrospektiv wurden die Daten von 362 Patienten mit akuter Arthritis und das DCS analysiert sowie die Hypervaskularisation im PDUS bei Fällen mit Uratarthritis (UA) vs. Nichturatarthritis (non-UA) ausgewertet. Alle Gelenke wurden der Größe nach in klein, mittel und groß eingeordnet. Es wurden Sensitivitäten, Spezifitäten, positive und negative prädiktive Werte und eine binäre Regression kalkuliert. Außerdem werteten die Autoren den Einfluss der Serumharnsäure auf die Detektierbarkeit eines DCS in jeder Gelenkkategorie aus.

Ergebnisse

Die Sensitivität des DCS bei Gicht in der gesamten Kohorte lag bei 72,5 %, bei großen Gelenken bei 66,0 %, bei mittleren betrug sie 78,8 % und bei kleinen 72,3 %. Die beste Sensitivität war bei Handgelenken mit 83,3 % bei einer Spezifität von 81,8 % zu verzeichnen. Die niedrigste Sensitivität fanden die Autoren bei Ellbogenmanifestation (42,9 %). Bei allen Gelenken außer dem Metatarsophalangealgelenk 1 (MTP-1) war die Inzidenz eines DCS bei Serumharnsäurewerten >7,5 mg/dl signifikant erhöht (p < 0,001). PDUS-Signale wurden unabhängig von der Diagnose am häufigsten bei mittleren und kleinen, dagegen kaum bei großen Gelenken gefunden.

Schlussfolgerungen

In der vorliegenden Studie war die Genauigkeit der Vorhersage einer Gichtarthritis durch das DCS sowie das Auftreten von PDUS-Hypervaskularität je nach Gelenk unterschiedlich. Die besten Ergebnisse wurden in mittelgroßen Gelenken, insbesondere Handgelenken, erzielt.

Schlüsselwörter

Gicht Uratarthritis Doppelkonturzeichen Ultraschall Gelenk 

Notes

Compliance with ethical guidelines

Conflict of interest

C. Löffler, H. Sattler, U. Löffler, B.K. Krämer, and R. Bergner declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Grassi W, Meenagh G, Pascual E, Filippucci E (2006) “Crystal clear”-sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin Arthritis Rheum 36:197–202.  https://doi.org/10.1016/j.semarthrit.2006.08.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Thiele RG, Schlesinger N (2007) Diagnosis of gout by ultrasound. Rheumatology (Oxford) 46:1116–1121.  https://doi.org/10.1093/rheumatology/kem058 CrossRefGoogle Scholar
  3. 3.
    Ottaviani S, Richette P, Allard A et al (2012) Ultrasonography in gout: a case-control study. Clin Exp Rheumatol 30:499–504PubMedGoogle Scholar
  4. 4.
    Terslev L, Gutierrez M, Schmidt WA et al (2015) Ultrasound as an outcome measure in gout. A validation process by the OMERACT Ultrasound Working Group. J Rheumatol 42:2177–2181.  https://doi.org/10.3899/jrheum.141294 CrossRefPubMedGoogle Scholar
  5. 5.
    Filippou G, Frediani B, Gallo A et al (2007) A “new” technique for the diagnosis of chondrocalcinosis of the knee: sensitivity and specificity of high-frequency ultrasonography. Ann Rheum Dis 66:1126–1128.  https://doi.org/10.1136/ard.2007.069344 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ogdie A, Taylor WJ, Weatherall M et al (2015) Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis 74:1868–1874.  https://doi.org/10.1136/annrheumdis-2014-205431 CrossRefPubMedGoogle Scholar
  7. 7.
    Löffler C, Sattler H, Peters L et al (2015) Distinguishing gouty arthritis from calcium pyrophosphate disease and other arthritides. J Rheumatol 42:513–520.  https://doi.org/10.3899/jrheum.140634 CrossRefPubMedGoogle Scholar
  8. 8.
    Das S, Ghosh A, Ghosh P et al (2017) Sensitivity and specificity of ultrasonographic features of gout in intercritical and chronic phase. Int J Rheum Dis 20:887–893.  https://doi.org/10.1111/1756-185X.12928 CrossRefPubMedGoogle Scholar
  9. 9.
    Ottaviani S, Gill G, Aubrun A et al (2015) Ultrasound in gout: a useful tool for following urate-lowering therapy. Joint Bone Spine 82:42–44.  https://doi.org/10.1016/j.jbspin.2014.03.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Thiele RG, Schlesinger N (2010) Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved. Rheumatol Int 30:495–503.  https://doi.org/10.1007/s00296-009-1002-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Pineda C, Amezcua-Guerra LM, Solano C et al (2011) Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res Ther 13:R4.  https://doi.org/10.1186/ar3223 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roddy E, Menon A, Hall A et al (2013) Polyarticular sonographic assessment of gout: a hospital-based cross-sectional study. Joint Bone Spine 80:295–300.  https://doi.org/10.1016/j.jbspin.2012.09.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Peiteado D, De Miguel E, Villalba A et al (2012) Value of a short four-joint ultrasound test for gout diagnosis: a pilot study. Clin Exp Rheumatol 30:830–837PubMedGoogle Scholar
  14. 14.
    Ottaviani S, Bardin T, Richette P (2012) Usefulness of ultrasonography for gout. Joint Bone Spine 79:441–445.  https://doi.org/10.1016/j.jbspin.2012.01.012 CrossRefPubMedGoogle Scholar
  15. 15.
    Neogi T, Jansen TLTA, Dalbeth N et al (2015) 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheumatol 67:2557–2568.  https://doi.org/10.1002/art.39254 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wright SA, Filippucci E, McVeigh C et al (2007) High-resolution ultrasonography of the first metatarsal phalangeal joint in gout: a controlled study. Ann Rheum Dis 66:859–864.  https://doi.org/10.1136/ard.2006.062802 CrossRefPubMedGoogle Scholar
  17. 17.
    Filippucci E, Riveros MG, Georgescu D et al (2009) Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study. Osteoarthr Cartil 17(003):178–181.  https://doi.org/10.1016/j.joca.2008.06.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Filippucci E, Scirè CA, Delle Sedie A et al (2010) Ultrasound imaging for the rheumatologist. XXV. Sonographic assessment of the knee in patients with gout and calcium pyrophosphate deposition disease. Clin Exp Rheumatol 28:2–5PubMedGoogle Scholar
  19. 19.
    Terslev L, Gutierrez M, Christensen R et al (2015) Assessing elementary lesions in gout by ultrasound: results of an OMERACT patient-based agreement and reliability exercise. J Rheumatol 42:2149–2154.  https://doi.org/10.3899/jrheum.150366 CrossRefPubMedGoogle Scholar
  20. 20.
    Naredo E, Uson J, Jiménez-Palop M et al (2014) Ultrasound-detected musculoskeletal urate crystal deposition: which joints and what findings should be assessed for diagnosing gout? Ann Rheum Dis 73:1522–1528.  https://doi.org/10.1136/annrheumdis-2013-203487 CrossRefPubMedGoogle Scholar
  21. 21.
    Lamers-Karnebeek FBG, Van Riel PLCM, Jansen TL (2014) Additive value for ultrasonographic signal in a screening algorithm for patients presenting with acute mono-/oligoarthritis in whom gout is suspected. Clin Rheumatol 33:555–559.  https://doi.org/10.1007/s10067-014-2505-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Sokoloff L (1957) The pathology of gout. Metabolism 6:230–243PubMedGoogle Scholar
  23. 23.
    Burt HM, Dutt YC (1986) Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis 45:858–864CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stewart S, Dalbeth N, Vandal AC et al (2017) Ultrasound features of the first metatarsophalangeal joint in gout and asymptomatic hyperuricaemia: comparison with normouricaemic individuals. Arthritis Care Res (Hoboken) 69:875–883.  https://doi.org/10.1002/acr.23082 CrossRefGoogle Scholar
  25. 25.
    Löffler C, Sattler H, Uppenkamp M, Bergner R (2016) Contrast-enhanced ultrasound in coxitis. Joint Bone Spine 83:669–674.  https://doi.org/10.1016/j.jbspin.2015.10.012 CrossRefPubMedGoogle Scholar
  26. 26.
    Song IH, Althoff CE, Hermann KG et al (2008) Knee osteoarthritis. Efficacy of a new method of contrast-enhanced musculoskeletal ultrasonography in detection of synovitis in patients with knee osteoarthritis in comparison with magnetic resonance imaging. Ann Rheum Dis 67:19–25CrossRefPubMedGoogle Scholar
  27. 27.
    Mandell BF (2008) Clinical manifestations of hyperuricemia and gout. Cleve Clin J Med 75(Suppl 5):S5–S8CrossRefPubMedGoogle Scholar
  28. 28.
    Cronstein BN, Sunkureddi P (2014) Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J Clin Rheumatol 19:19–29.  https://doi.org/10.1097/RHU.0b013e31827d8790.Mechanistic Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nephrology, Endocrinology, Rheumatology, University Hospital MannheimUniversity of HeidelbergMannheimGermany
  2. 2.Department of Oncology, Rheumatology, NephrologyKlinikum LudwigshafenLudwigshafenGermany
  3. 3.Psychotherapy Clinic, Institute of PsychologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations