Zeitschrift für Rheumatologie

, Volume 77, Issue 3, pp 256–262 | Cite as

Interferon-stimulated gene 15 expression in systemic lupus erythematosus

Diagnostic value and association with lymphocytopenia
  • Y. Yuan
  • H. Ma
  • Z. Ye
  • W. Jing
  • Z. Jiang



The aim of this study was to (a) assess the relationship between interferon-stimulated gene 15 (ISG15) expression and clinical manifestations of systemic lupus erythematosus (SLE) and (b) investigate the diagnostic value of ISG15 in SLE.

Patients and methods

The study comprised 28 patients newly diagnosed with SLE, 10 patients with undifferentiated connective tissue disease, and 22 healthy volunteers. Of the SLE patients, 14 were chosen randomly to be followed up for 4 weeks. ISG15 expression in whole blood cells was determined by quantitative polymerase chain reaction. Clinical and laboratory parameters were recorded at baseline and after treatment.


The ISG15 mRNA level was higher in whole blood cell counts of SLE patients when compared with the disease control and healthy control groups. Moreover, it was correlated with SLE disease activity as assessed via the SLE disease activity index, serositis, and anemia at baseline. ISG15 expression correlated with lymphocytopenia in active SLE patients before treatment. On receiver operating characteristic curve analysis, the area under the curve for ISG15 expression was 0.826 (p = 0.000015).


ISG15 expression is relatively high in SLE patients and correlates with disease activity before treatment. ISG15 expression is higher in SLE patients with lymphocytopenia before treatment.


Systemic lupus erythematosus Interferon stimulated gene 15 Lymphocytopenia 

Expression des interferonstimulierten Gens 15 bei systemischem Lupus erythematosus

Diagnostische Bedeutung und Zusammenhang mit Lymphozytopenie



Ziel der vorliegenden Studie war es, einerseits den Zusammenhang zwischen der Expression des interferonstimulierten Gens 15 (ISG15) und der klinischen Manifestation des systemischen Lupus erythematosus (SLE) zu ermitteln und andererseits die diagnostische Bedeutung von ISG15 bei SLE zu untersuchen.

Patienten und Methoden

Die Studie umfasst 28 Patienten mit Erstdiagnose eines SLE, 10 Patienten mit undifferenzierter Bindgewebserkrankung und 22 gesunde Probanden. Von den SLE-Patienten wurden 14 für eine 4‑wöchige Nachbeobachtung ausgewählt. Die ISG15-Expression in den gesamten Blutzellen wurde mittels quantitativer Polymerasekettenreaktion bestimmt. Zu Beginn und nach der Behandlung wurden klinische und Laborparameter erhoben.


Der ISG15-mRNA-Wert war in den gesamten Blutzellen bei SLE-Patienten höher als bei der Kontrollgruppe mit anderen Erkrankungen und als in der gesunden Kontrollgruppe. Außerdem war er mit der Krankheitsaktivität des SLE korreliert, was mit dem SLE-Krankheitsaktivitätsindex sowie Zeichen der Serositis und Anämie zu Beginn ermittelt wurde. Die ISG15-Expression korrelierte mit dem Bestehen einer Lymphozytopenie bei Patienten mit aktivem SLE vor der Behandlung. In der Receiver-Operating-Characteristic-Curve-Analyse betrug die Fläche unter der Kurve für die ISG15-Expression 0,826 (p = 0,000015).


Die ISG15-Expression ist bei SLE-Patienten relativ hoch und korreliert mit der Krankheitsaktivität vor Behandlung. Bei SLE-Patienten mit Lymphozytopenie ist die ISG15-Expression vor Therapie höher.


Systemischer Lupus erythematosus Interferonstimuliertes Gen 15 Lymphozytopenie 



We thank the members of the Department of Rheumatology and Immunology in the hospital for their contributions to the immunological characterization of the patient. We thank all the patients and their family for their support and cooperation.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical guidelines

Conflict of interest

Y. Yuan, H. Ma, Z. Ye, W. Jing and Z. Jiang declare that they have no competing interests.

The current study was approved by the Institutional Medical Ethics Review Board of the First Hospital of Jilin University. Written informed consent was obtained from each patient in compliance with the Declaration of Helsinki.

Supplementary material

393_2017_274_MOESM1_ESM.docx (19 kb)
Table S1. Clinical and demographic characteristics of the lymphocytopenia group and the non-lymphocytopenia group at baseline


  1. 1.
    Azevedo PC, Murphy G, Isenberg DA (2014) Pathology of systemic lupus erythematosus: the challenges ahead. Methods Mol Biol 1134:1–16CrossRefPubMedGoogle Scholar
  2. 2.
    Farrell PJ, Broeze RJ, Lengyel P (1979) Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279(5713):523–525CrossRefPubMedGoogle Scholar
  3. 3.
    Haas AL et al (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262(23):11315–11323PubMedGoogle Scholar
  4. 4.
    Lenschow DJ et al (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104(4):1371–1376CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Okumura F, Zou W, Zhang DE (2007) ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev 21(3):255–260CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shi HX et al (2010) Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol 30(10):2424–2436CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20(3):362–371CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Feng X et al (2017) Artesunate inhibits type I interferon-induced production of macrophage migration inhibitory factor in patients with systemic lupus erythematosus. Lupus 26(1):62–72CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang CY et al (2015) Vulnerability of atherosclerotic plaques is associated with type I interferon in a murine model of lupus and atherosclerosis. Genet Mol Res 14(4):14871–14881CrossRefPubMedGoogle Scholar
  10. 10.
    Braunstein I et al (2012) The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br J Dermatol 166(5):971–975CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725CrossRefPubMedGoogle Scholar
  12. 12.
    Tan EM et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25(11):1271–1277CrossRefPubMedGoogle Scholar
  13. 13.
    Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291PubMedGoogle Scholar
  14. 14.
    Petri M et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mosca M et al (1998) Undifferentiated connective tissue diseases: the clinical and serological profiles of 91 patients followed for at least 1 year. Lupus 7(2):95–100CrossRefPubMedGoogle Scholar
  16. 16.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35CrossRefPubMedGoogle Scholar
  17. 17.
    Feng X et al (2015) Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clin Rheumatol 34(1):71–79CrossRefPubMedGoogle Scholar
  18. 18.
    Landolt-Marticorena C et al (2009) Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis 68(9):1440–1446CrossRefPubMedGoogle Scholar
  19. 19.
    Care MA et al (2016) Network analysis identifies proinflammatory plasma cell polarization for secretion of ISG15 in human autoimmunity. J Immunol 197(4):1447–1459CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Owhashi M et al (2003) Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor. Biochem Biophys Res Commun 309(3):533–539CrossRefPubMedGoogle Scholar
  21. 21.
    Wenzel J et al (2004) Lymphocytopenia in lupus erythematosus: close in vivo association to autoantibodies targeting nuclear antigens. Br J Dermatol 150(5):994–998CrossRefPubMedGoogle Scholar
  22. 22.
    Stafford HA et al (1997) Anti-ribosomal and ‘P-peptide’-specific autoantibodies bind to T lymphocytes. Clin Exp Immunol 109(1):12–19CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Silvestris F et al (2003) Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-1) in active lupus. Lupus 12(1):8–14CrossRefPubMedGoogle Scholar
  24. 24.
    Emlen W, Niebur J, Kadera R (1994) Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 152(7):3685–3692PubMedGoogle Scholar
  25. 25.
    Huang YF et al (2014) Isg15 controls p53 stability and functions. Cell Cycle 13(14):2200–2210CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Rheumatology and Immunology, the First HospitalJilin UniversityChangchunChina
  2. 2.Department of Gerontology, the First HospitalJilin UniversityChangchunChina

Personalised recommendations