Skip to main content
Log in

Multiparametrische Bildgebung mittels simultaner MR/PET

Methodische Aspekte und klinische Anwendungsmöglichkeiten

Multiparametric imaging with simultaneous MRI/PET

Methodological aspects and possible clinical applications

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die MR/PET ermöglicht als Hybridverfahren die Akquisition einer Vielzahl von Parametern während einer einzelnen Untersuchung. Dazu gehören die Darstellung der Anatomie, aber auch funktioneller und metabolischer Informationen, etwa zu Perfusion, Diffusion und Stoffwechsel.

Ziel der Arbeit

Die vorliegende Arbeit gibt einen Überblick über die verschiedenen Methoden und deren Anwendungsmöglichkeiten in multiparametrischer Bildgebung mittels MR/PET.

Ergebnisse

Es konnte gezeigt werden, dass die Zusammenführung der Informationen, die bei den Hybridverfahren gewonnen werden, bei onkologischen, neurologischen und inflammatorischen Erkrankungen zu einer Verbesserung der diagnostischen Genauigkeit führen kann. Aufgrund der Fülle und Komplexität der hierbei anfallenden Daten ist die Anwendung von Klassifikationsverfahren und Methoden der Parameterselektion sinnvoll.

Diskussion

Derzeit sind der klinischen Anwendung der dargestellten Verfahren noch Grenzen gesetzt, da einerseits eine Software für eine schnelle und standardisierte Auswertung der gewonnenen Bilddaten noch fehlt. Andererseits gibt es Mängel bei der Vergleichbarkeit der Ergebnisse aufgrund von fehlenden Standardisierungen des Untersuchungs- und Befundungsablaufs.

Abstract

Background

Combined MRI/PET enables the acquisition of a variety of imaging parameters during one examination, including anatomical and functional information such as perfusion, diffusion, and metabolism.

Objective

The present article summarizes these methods and their applications in multiparametric imaging via MRI/PET.

Results

Numerous studies have shown that the combination of these parameters can improve diagnostic accuracy for many applications, including the imaging of oncological, neurological, and inflammatory conditions. Because of the amount and the complexity of the acquired multiparametric data, there is a need for advanced analysis tools, such as methods of parameter selection and data classification.

Discussion

Currently, the clinical application of this process still has limitations. On the one hand, software for the fast calculation and standardized evaluation of the imaging data acquired is still lacking. On the other hand, there are deficiencies when comparing the results because of a lack of standardization of the assessment and diagnostic procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368

    Article  PubMed  Google Scholar 

  2. Arbizu J, Tejada S, Marti-Climent JM et al (2012) Quantitative volumetric analysis of gliomas with sequential MRI and (1)(1)C-methionine PET assessment: patterns of integration in therapy planning. Eur J Nucl Med Mol Imaging 39:771–781

    Article  PubMed  Google Scholar 

  3. Artan Y, Haider MA, Langer DL et al (2010) Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19:2444–2455

    Article  PubMed  Google Scholar 

  4. Awasthi R, Rathore RK, Soni P et al (2012) Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 54:205–213

    Article  PubMed  Google Scholar 

  5. Bailey D, Barthel H, Beyer T et al (2013) Summary Report of the First International Workshop on PET/MR Imaging, March 19–23, 2012, Tübingen, Germany. Mol Imaging Biol 15:361–371

    Article  PubMed Central  PubMed  Google Scholar 

  6. Blockmans D, Bley T, Schmidt W (2009) Imaging for large-vessel vasculitis. Curr Opin Rheumatol 21:19–28

    Article  PubMed  Google Scholar 

  7. Bruijnen ST, Gent YY, Voskuyl AE et al (2014) Present role of positron emission tomography in the diagnosis and monitoring of peripheral inflammatory arthritis: a systematic review. Arthritis Care Res 66:120–130

    Article  CAS  Google Scholar 

  8. Cheng HL, Stikov N, Ghugre NR et al (2012) Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging 36:805–824

    Article  PubMed  Google Scholar 

  9. Delso G, Furst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  10. Dukart J, Mueller K, Horstmann A et al (2011) Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE 6:e18111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Einspieler I, Thurmel K, Pyka T et al (2015) Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur J Nucl Med Mol Imaging 42:1012–1024

    Article  CAS  PubMed  Google Scholar 

  12. Floeth FW, Sabel M, Stoffels G et al (2008) Prognostic value of 18 F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J Nucl Med 49:730–737

    Article  PubMed  Google Scholar 

  13. Gillings N (2013) Radiotracers for positron emission tomography imaging. MAGMA 26:149–158

    Article  PubMed  Google Scholar 

  14. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652

    Article  CAS  PubMed  Google Scholar 

  15. Halpenny DF, Burke JP, Lawlor GO et al (2009) Role of PET and combination PET/CT in the evaluation of patients with inflammatory bowel disease. Inflamm Bowel Dis 15:951–958

    Article  PubMed  Google Scholar 

  16. Hambrock T, Vos PC, Hulsbergen-Van De Kaa CA et al (2013) Prostate cancer: computer-aided diagnosis with Multiparametric 3-T MR imaging – effect on observer performance. Radiology 266:521–530

    Article  PubMed  Google Scholar 

  17. Hu X, Wong KK, Young GS et al (2011) Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 33:296–305

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jacobs MA, Barker PB, Bluemke DA et al (2003) Benign and malignant breast lesions: diagnosis with multiparametric MR imaging. Radiology 229:225–232

    Article  PubMed  Google Scholar 

  19. Jesuratnam-Nielsen K, Logager VB, Munkholm P et al (2015) Diagnostic accuracy of three different MRI protocols in patients with inflammatory bowel disease. Acta Radiol Open. doi:10.1177/2058460115588099

    PubMed Central  PubMed  Google Scholar 

  20. Kloppel S, Stonnington CM, Barnes J et al (2008) Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain 131:2969–2974

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kotsiantis SB (2007) Supervised Machine Learning: A Review of Classification Techniques. Informatica 31:249–268

    Google Scholar 

  22. Kumar R, Dhanpathi H, Basu S et al (2008) Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 52:50–65

    CAS  PubMed  Google Scholar 

  23. Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791

    Article  PubMed  Google Scholar 

  24. Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(Suppl 1):S52–S64

    Article  PubMed  Google Scholar 

  25. Mcqueen FM (2000) Magnetic resonance imaging in early inflammatory arthritis: what is its role? Rheumatology (Oxford) 39:700–706

    Article  CAS  Google Scholar 

  26. Niaf E, Rouviere O, Mege-Lechevallier F et al (2012) Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Phys Med Biol 57:3833–3851

    Article  PubMed  Google Scholar 

  27. Park H, Wood D, Hussain H et al (2012) Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 53:546–551

    Article  CAS  PubMed  Google Scholar 

  28. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18 F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  29. Pinker K, Stadlbauer A, Bogner W et al (2012) Molecular imaging of cancer: MR spectroscopy and beyond. Eur J Radiol 81:566–577

    Article  CAS  PubMed  Google Scholar 

  30. Rui X, li Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16:645–678

    Article  Google Scholar 

  31. Schick F (2006) MRT sequences. Part I. Radiologe 46:615–627

    Article  CAS  PubMed  Google Scholar 

  32. Schlemmer HP, Pichler BJ, Schmand M et al (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248:1028–1035

    Article  PubMed  Google Scholar 

  33. Schmidt H, Brendle C, Schraml C et al (2013) Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18 F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System. Investig Radiol 48(5):241–246

    Article  Google Scholar 

  34. Shah V, Turkbey B, Mani H et al (2012) Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys 39:4093–4103

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sinha S, Lucas-Quesada FA, Debruhl ND et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026

    Article  CAS  PubMed  Google Scholar 

  36. Sourbron SP, Buckley DL (2012) Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 57:R1–33

    Article  CAS  PubMed  Google Scholar 

  37. Soussan M, Nicolas P, Schramm C et al (2015) Management of large-vessel vasculitis with FDG-PET: a systematic literature review and meta-analysis. Medicine 94:e622

    Article  PubMed Central  PubMed  Google Scholar 

  38. Turkbey B, Mani H, Shah V et al (2011) Multiparametric 3 T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186:1818–1824

    Article  PubMed  Google Scholar 

  39. Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology 255:89–99

    Article  PubMed Central  PubMed  Google Scholar 

  40. Van Der Maaten LJP, Postma EO, Van Den Herik HJ (2009) Dimensionality Reduction: A Comparative Review. TiCC Technical Report 2009-005

  41. Weinmann H-J, Ebert W, Misselwitz B et al (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Schwenzer.

Ethics declarations

Interessenkonflikt

S. Gatidis, H. Schmidt, C.D. Claussen und N.F. Schwenzer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

B. Hellmich, Kirchheim-Teck

P. Lamprecht, Lübeck

F. Moosig, Neumünster

Dieser Beitrag ist eine aktualisierte und neu bearbeitete Fassung des Beitrags „Multiparametrische Bildgebung mittels simultaner MR/PET. Methodische Aspekte und Möglichkeiten der klinischen Anwendungen“ Radiologe 2013 53:669–675, doi:10.1007/s00117-013-2496-3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatidis, S., Schmidt, H., Claussen, C.D. et al. Multiparametrische Bildgebung mittels simultaner MR/PET. Z Rheumatol 74, 878–886 (2015). https://doi.org/10.1007/s00393-015-0011-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-015-0011-0

Schlüsselwörter

Keywords

Navigation