Transcatheter aortic valve replacement acutely improves left ventricular mechanical efficiency in severe aortic stenosis: effects of different phenotypes

Abstract

Aim

Aortic stenosis is a frequent valvular disease, with transcatheter aortic valve implantation (TAVI) being performed when surgical replacement is at increased risk. However, TAVI-induced effects on myocardial efficiency are unknown. We aimed to investigate changes in LV mechano-energetic pre-/post-TAVI and their prognostic impact.

Methods

A total of 46 patients (25 males) received transesophageal and simultaneous radial pressure plus transaortic gradient monitoring before/immediately after prosthesis deployment. Efficiency was computed as external work/potential energy, as derived from LV pressure–volume plots; myocardial oxygen consumption (MVO2) was estimated as PWImod, i.e. a noninvasively validated alternative for MVO2 estimation.

Results

TAVI was successful in all patients, peak transaortic gradient decreasing − 40 ± 20 mmHg (p < 0.001). Efficiency improved post-TAVI (+ 0.6 ± 0.12; p = 0.004), with a concomitant PWImod reduction (− 16 ± 31%; p < 0.001). When contextualized to fixed PWImod value (5 ml/min/100 g), efficiency significantly affected survival (p = 0.029). Over 1026 ± 450-day follow-up, a change in efficiency pre-/post-TAVI ≤ 0.021 (median of the difference) predicted more deaths from any cause (30%) as compared with a change > 0.021 (17%), particularly in those patients with a pre-TAVI mean high-gradient (HG ≥ 40 mmHg) phenotype (p < 0.05). In particular, HG patients exhibited the lowest efficiency/PWImod ratio pre-/post-TAVI (p = 0.048), relative to the other aortic stenosis patients, suggestive of an unfavourable matching between cardiac function and metabolic demand, which foreshortens some intrinsic damaged muscle condition in these patients.

Conclusion

LV mechanical efficiency improves immediately post-TAVI, notwithstanding an inhomogeneous mechano-energetic matching among the aortic stenosis patients, which can impact negatively on their long-term prognosis, particularly in those with the HG phenotype.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2786

    Article  Google Scholar 

  2. 2.

    Eveborn GW, Schirmer H, Heggelund G, Lunde P, Rasmussen K (2013) The evolving epidemiology of valvular aortic stenosis: the Tromsø study. Heart 99:396–400

    Article  Google Scholar 

  3. 3.

    Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 70:252–289

    Article  Google Scholar 

  4. 4.

    Dimitrow PP (2014) Aortic stenosis: new pathophysiological mechanisms and their therapeutic implications. Pol Arch Med Wewn 124:723–730

    PubMed  Google Scholar 

  5. 5.

    Mack MJ, Leon MB, Thourani VH et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380:1695–1705

    Article  Google Scholar 

  6. 6.

    Popma JJ, Deeb GM, Yakubov SJ et al (2019) Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 380:1706–1715

    Article  Google Scholar 

  7. 7.

    Bing RJ, Hammond MM, Handelsman J, Powers R (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38:1–24

    CAS  Article  Google Scholar 

  8. 8.

    Hansson NH, Sörensen J, Harms HJ et al (2017) Myocardial oxygen consumption and efficiency in aortic valve stenosis patients with and without heart failure. J Am Heart Assoc 6:1–10

    Article  Google Scholar 

  9. 9.

    Güçlü A, Knaapen P, Harms HJ et al (2015) Myocardial efficiency is an important determinant of functional improvement after aortic valve replacement in aortic valve stenosis patients: a combined PET and CMR study. Eur Heart J Cardiovasc Imaging 16:882–889

    Article  Google Scholar 

  10. 10.

    Klotz S, Dickstein ML, Burkhoff D (2007) A computational method of prediction of the end-diastolic pressure-volume relationship by single beat. Nat Protoc 2:2152–2158

    CAS  Article  Google Scholar 

  11. 11.

    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    CAS  Article  Google Scholar 

  12. 12.

    Schwarzl M, Ojeda F, Zeller T et al (2016) Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure–volume relationship in non-heart failure individuals: data from a large-scale, population based cohort. Eur Heart J 37:1807–1814

    Article  Google Scholar 

  13. 13.

    Kass DA, Marino P, Maughan WL, Sagawa K (1989) Determinants of end-systolic pressure–volume relations during acute regional ischemia in situ. Circulation 80:1783–1794

    CAS  Article  Google Scholar 

  14. 14.

    Chen CH, Fetics B, Nevo E, Rochitte C, Chiou K, Kass DA (2001) Non invasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    CAS  Article  Google Scholar 

  15. 15.

    Borow KM, Green LH, Grossman W, Braunwald E (1982) Left ventricular end-systolic stress-shortening and stress-length relations in humans. Am J Cardiol 50:1301–1308

    CAS  Article  Google Scholar 

  16. 16.

    Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 59:273–286

    Article  Google Scholar 

  17. 17.

    Hoeft A, Sonntag H, Stephan H, Kletter D (1991) Validation of myocardial oxygen demand indices in patients awake and during anesthesia. Anesthesiology 75:49–56

    CAS  Article  Google Scholar 

  18. 18.

    Knaapen P, Germans T, Knuuti J et al (2007) Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115:918–927

    Article  Google Scholar 

  19. 19.

    Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027

    CAS  PubMed  Google Scholar 

  20. 20.

    Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    CAS  Article  Google Scholar 

  21. 21.

    Devereux RB, Lutas EM, Casale PN et al (1984) Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4:1222–1230

    CAS  Article  Google Scholar 

  22. 22.

    Clavel MA, Dumesnil JG, Capoulade R, Mathieu P, Sénéchal M, Pibarot P (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267

    Article  Google Scholar 

  23. 23.

    Eleid MF, Padang R, Al-Hijji M et al (2019) Hemodynamic response in low-flow low gradient aortic stenosis with preserved ejection fraction after TAVR. J Am Coll Cardiol 73:1731–1732

    Article  Google Scholar 

  24. 24.

    Di Bello V, Giannini C, De Carlo M et al (2012) Acute improvement in arterial-ventricular coupling after transcatheter aortic valve implantation (CoreValve) in patients with symptomatic aortic stenosis. Int J Cardiovasc Imaging 28:79–87

    Article  Google Scholar 

  25. 25.

    Takeuchi M, Odake M, Takaoka H, Hayashi Y, Yokoyama M (1992) Comparison between preload recruitable stroke work and the end-systolic pressure–volume relationship in man. Eur Heart J 13(suppl 1):80–84

    Article  Google Scholar 

  26. 26.

    Migliore RA, Adaniya ME, Barranco M et al (2016) Ventricular-arterial coupling in severe aortic stenosis: relationship with symptoms and heart failure. Rev Argent Cardiol 84:304–309

    Google Scholar 

  27. 27.

    Little SH, Oh JK, Gilliam L et al (2016) Self-expanding transcatheter aortic valve replacement versus surgical valve replacement in patients at high risk for surgery: a study of echocardiographic change and risk prediction. Circ Cardiovasc Interv 9:1–11

    Article  Google Scholar 

  28. 28.

    Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27:416–432

    CAS  Article  Google Scholar 

  29. 29.

    Gotzmann M, Hauptmann S, Hogeweg M et al (2019) Hemodynamics of paradoxical severe aortic stenosis: insight from a pressure-volume loop analysis. Clin Res Cardiol. https://doi.org/10.1007/s00392-019-01423-z

    Article  PubMed  Google Scholar 

  30. 30.

    Dekker AL, Barenbrug PJ, van Der Veen FH, Roekaerts P, Mochtar B, Maessen JG (2003) Pressure–volume loops in patients with aortic stenosis. J Heart Valve Dis 12:325–332

    PubMed  Google Scholar 

  31. 31.

    Tanoue Y, Maeda T, Oda S et al (2009) Left ventricular performance in aortic valve replacement. Interact Cardiovasc Thorac Surg 9:255–259

    Article  Google Scholar 

  32. 32.

    Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  Google Scholar 

  33. 33.

    van der Velden J (2017) Targeting high oxygen consumption to prevent cardiac dysfunction in patients with aortic valve stenosis. Circ Cardiovasc Imaging 10:10

    Article  Google Scholar 

Download references

Acknowledgements

We thank A.S. Bongo MDa, G. De Luca MDa, R. Rosso MDa, E. Micalizzi MDb, M. Commodo MDb, C. Monaco MDc for having allowed us to collect data in their patients, Cardiology Divisiona, Division of Cardiac Surgeryb, Service of Cardiac Anestesiologyc, Azienda Ospedaliera Universitaria “Maggiore della Carità”, Novara, Italy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo N. Marino.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marino, P.N., Binda, G., Calzaducca, E. et al. Transcatheter aortic valve replacement acutely improves left ventricular mechanical efficiency in severe aortic stenosis: effects of different phenotypes. Clin Res Cardiol 109, 819–831 (2020). https://doi.org/10.1007/s00392-019-01570-3

Download citation

Keywords

  • Aortic valve stenosis
  • Transcatheter aortic valve implantation
  • Pressure–volume plot
  • Myocardial efficiency
  • Oxygen consumption
  • Aortic stenosis phenotypes