Adenosine stress perfusion cardiac magnetic resonance imaging in patients undergoing intracoronary bone marrow cell transfer after ST-elevation myocardial infarction: the BOOST-2 perfusion substudy



In the placebo-controlled, double-blind BOne marrOw transfer to enhance ST-elevation infarct regeneration (BOOST) 2 trial, intracoronary autologous bone marrow cell (BMC) transfer did not improve recovery of left ventricular ejection fraction (LVEF) at 6 months in patients with ST-elevation myocardial infarction (STEMI) and moderately reduced LVEF. Regional myocardial perfusion as determined by adenosine stress perfusion cardiac magnetic resonance imaging (S-CMR) may be more sensitive than global LVEF in detecting BMC treatment effects. Here, we sought to evaluate (i) the changes of myocardial perfusion in the infarct area over time (ii) the effects of BMC therapy on infarct perfusion, and (iii) the relation of infarct perfusion to LVEF recovery at 6 months.

Methods and results

In 51 patients from BOOST-2 (placebo, n = 10; BMC, n = 41), S-CMR was performed 5.1 ± 2.9 days after PCI (before placebo/BMC treatment) and after 6 months. Infarct perfusion improved from baseline to 6 months in the overall patient cohort as reflected by the semi-quantitative parameters, perfusion defect–infarct size ratio (change from 0.54 ± 0.20 to 0.43 ± 0.22; P = 0.006) and perfusion defect–upslope ratio (0.54 ± 0.23 to 0.68 ± 0.22; P < 0.001), irrespective of randomised treatment. Perfusion defect–upslope ratio at baseline correlated with LVEF recovery (r = 0.62; P < 0.001) after 6 months, with a threshold of 0.54 providing the best sensitivity (79%) and specificity (74%) (area under the curve, 0.79; 95% confidence interval, 0.67–0.92).


Infarct perfusion improves from baseline to 6 months and predicts LVEF recovery in STEMI patients undergoing early PCI. Intracoronary BMC therapy did not enhance infarct perfusion in the BOOST-2 trial.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Szummer K, Wallentin L, Lindhagen L, Alfredsson J, Erlinge D, Held C et al (2017) Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995–2014. Eur Heart J 38(41):3056–3065

    Article  Google Scholar 

  2. 2.

    Zahler D, Lee-Rozenfeld K, Ravid D, Rozenbaum Z, Banai S, Keren G, Shacham Y (2019) Relation of lowering door-to-balloon time and mortality in ST segment elevation myocardial infarction patients undergoing percutaneous coronary intervention. Clin Res Cardiol.

    Article  PubMed  Google Scholar 

  3. 3.

    Mamas MA, Anderson SG, O'Kane PD, Keavney B, Nolan J, Oldroyd KG et al (2014) Impact of left ventricular function in relation to procedural outcomes following percutaneous coronary intervention: insights from the British Cardiovascular Intervention Society. Eur Heart J 35(43):3004–3012

    CAS  Article  Google Scholar 

  4. 4.

    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39(2):119–177

    Article  Google Scholar 

  5. 5.

    Backhaus SJ, Kowallick JT, Stiermaier T, Lange T, Koschalka A, Navarra JL et al (2019) Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction. Clin Res Cardiol.

    Article  PubMed  Google Scholar 

  6. 6.

    Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ (2016) Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res 118(1):95–107

    CAS  Article  Google Scholar 

  7. 7.

    Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7(4):204–215

    Article  Google Scholar 

  8. 8.

    Fisher SA, Zhang H, Doree C, Mathur A, Martin-Rendon E (2015) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 9:CD006536

    Google Scholar 

  9. 9.

    Wollert KC, Meyer GP, Muller-Ehmsen J, Tschope C, Bonarjee V, Larsen AI et al (2017) Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J 38(39):2936–2943

    CAS  Article  Google Scholar 

  10. 10.

    Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM et al (2018) Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I—analytical validation and clinical qualification. J Cardiovasc Magn Reson 20(1):67

    Article  Google Scholar 

  11. 11.

    Hussain ST, Morton G, De Silva K, Jogiya R, Schuster A, Paul M et al (2017) The assessment of ischaemic burden: validation of a functional jeopardy score against cardiovascular magnetic resonance perfusion imaging. Clin Res Cardiol 106(4):259–270

    Article  Google Scholar 

  12. 12.

    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized P. Standardized cardiovascular magnetic resonance (CMR) protocols (2013) update. J Cardiovasc Magn Reson 2013(15):91

    Google Scholar 

  13. 13.

    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    CAS  Article  Google Scholar 

  14. 14.

    Bethke A, Shanmuganathan L, Shetelig C, Swanson D, Andersen GO, Eritsland J et al (2018) MR findings of microvascular perfusion in infarcted and remote myocardium early after successful primary PCI. PLoS ONE 13(11):e0206723

    Article  Google Scholar 

  15. 15.

    Wong DT, Leung MC, Das R, Liew GY, Williams K, Dundon BK et al (2011) Diagnostic accuracy of adenosine stress cardiovascular magnetic resonance following acute ST-segment elevation myocardial infarction post primary angioplasty. J Cardiovasc Magn Reson 13:62

    Article  Google Scholar 

  16. 16.

    Wong DT, Leung MC, Richardson JD, Puri R, Bertaso AG, Williams K et al (2012) Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging 28(8):1971–1981

    Article  Google Scholar 

  17. 17.

    Bethke A, Shanmuganathan L, Andersen GO, Eritsland J, Swanson D, Klow NE et al (2019) Microvascular perfusion in infarcted and remote myocardium after successful primary PCI: angiographic and CMR findings. Eur Radiol. 29(2):941–950

    Article  Google Scholar 

  18. 18.

    Robbers LF, Nijveldt R, Beek AM, Hirsch A, van der Laan AM, Delewi R et al (2014) Cell therapy in reperfused acute myocardial infarction does not improve the recovery of perfusion in the infarcted myocardium: a cardiac MR imaging study. Radiology 272(1):113–122

    Article  Google Scholar 

  19. 19.

    Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  Google Scholar 

  20. 20.

    Sezer M, van Royen N, Umman B, Bugra Z, Bulluck H, Hausenloy DJ et al (2018) Coronary microvascular injury in reperfused acute myocardial infarction: a view from an integrative perspective. J Am Heart Assoc 7(21):e009949

    CAS  Article  Google Scholar 

  21. 21.

    Niccoli G, Scalone G, Lerman A, Crea F (2016) Coronary microvascular obstruction in acute myocardial infarction. Eur Heart J 37(13):1024–1033

    Article  Google Scholar 

  22. 22.

    Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G et al (2019) Optimized treatment of ST-elevation myocardial infarction. Circ Res 125(2):245–258

    CAS  Article  Google Scholar 

  23. 23.

    van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A et al (2014) Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging 7(9):930–939

    Article  Google Scholar 

  24. 24.

    de Waha S, Desch S, Eitel I, Fuernau G, Lurz P, Leuschner A et al (2012) Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol 101(6):487–495

    Article  Google Scholar 

  25. 25.

    Hsu LY, Jacobs M, Benovoy M, Ta AD, Conn HM, Winkler S et al (2018) Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging 11(5):697–707

    Article  Google Scholar 

Download references


We would like to thank the following physicians, research assistants, and study nurses for their support of the trial: I. Schridde and S. Tammen (Hannover); E. Erdmann, M. Halbach, B. Krausgrill, and T. Schewior (Cologne); B. Blank (Berlin); W. Bethge (Tübingen); R. Bülow, M. Heukäufer, and T. Neumann (Greifswald); A. Dösch (Heidelberg); and U. Sechtem (Stuttgart). We thank F.J. Neumann (Bad Krozingen) and G. Steinhoff (Rostock) who served as members of the Data and Safety Monitoring Board.


This work was supported by the German Research Foundation (DR 148/13-1 Programme Clinical Trials), the Alfried Krupp von Bohlen and Halbach-Foundation, and the Robert Bosch Stiftung.

Author information



Corresponding author

Correspondence to Simon Greulich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seitz, A., Wollert, K.C., Meyer, G.P. et al. Adenosine stress perfusion cardiac magnetic resonance imaging in patients undergoing intracoronary bone marrow cell transfer after ST-elevation myocardial infarction: the BOOST-2 perfusion substudy. Clin Res Cardiol 109, 539–548 (2020).

Download citation


  • St-elevation myocardial infarction
  • Adenosine stress perfusion cardiac magnetic resonance imaging
  • Bone marrow cell therapy