Reduced global myocardial perfusion reserve in DCM and HCM patients assessed by CMR-based velocity-encoded coronary sinus flow measurements and first-pass perfusion imaging

  • Michael Bietenbeck
  • Anca Florian
  • Zornitsa Shomanova
  • Claudia Meier
  • Ali Yilmaz
Original Paper



Coronary microvascular dysfunction (CMD) is an independent predictor of poor prognosis in patients suffering from dilative or hypertrophic cardiomyopathy (DCM/HCM). To assess CMD, quantitative myocardial first-pass perfusion (1P) cardiovascular magnetic resonance (CMR) can be performed. Coronary sinus flow (CSF) measurements at rest and during maximal vasodilatation are an alternative and well-validated approach for the quantification of global myocardial blood flow (MBF) in CMR.


Global myocardial perfusion reserve (MPR) was used to compare both methods, 1P and CSF. This measure reflects the ratio of myocardial blood flow during maximal coronary vasodilatation over rest. 1P-MPR and CSF-MPR were calculated in 17 HCM patients, 14 DCM patients and 16 controls, who underwent a stress CMR study to rule out obstructive coronary artery disease. All patients were examined on a 1.5-T system and the study protocol comprised both, first-pass myocardial perfusion imaging (MPI) and velocity-encoded (VENC) phase-contrast imaging of CSF during rest and adenosine stress.


1P-MPR was significantly decreased only in HCM patients compared to controls (1.14 vs. 1.43, p = 0.045) whereas CSF-MPR was significantly reduced in both patient groups, HCM and DCM, compared to controls (2.38 and 2.07 vs. 3.18, p = 0.041 and p = 0.032). CSF-MBF at maximal stress was significantly lower in HCM and DCM patients compared to the control group (0.11 and 1.23 vs. 1.58 ml/min/g, p = 0.008 and p = 0.040). A moderate but significant correlation between CSF-MPR and 1P-MPR was observed (r = 0.39, p = 0.011). A negative correlation between LV wall thickness and CSF-MBF at rest and stress was found in the DCM group using VENC-based CSF measurements (r = − 0.64, p = 0.013 and r = − 0.69, p = 0.006)—but not using 1P-MPI. Post-proceeding analysis regarding 1P-MPR and CSF-MPR measurements required 20.1 and 6.5 min, respectively (p < 0.001).


The presence of microvascular disease can be non-invasively and quickly detected by VENC-based CSF-MPR measurements during routine stress perfusion CMR in both HCM and DCM patients. Compared to conventional 1P-MPI, VENC-based CSF-MPR is particularly useful in DCM patients with thinned ventricular walls.


Myocardial perfusion CMR Coronary sinus flow HCM DCM 



Cardiovascular magnetic resonance


Dilative cardiomyopathy




Left ventricle


Left ventricular end-diastolic volume


Left ventricular ejection fraction




Interquartile range


Coronary artery disease


Myocardial perfusion imaging


Body weight


Region of interest


Rate pressure product


Major cardiac events


Microvascular dysfunction


Myocardial perfusion reserve


Coronary sinus flow


First-pass perfusion


Myocardial blood flow


Velocity encoding


Author contributions

MB participated in the CMR exams, carried out the data and statistical analysis, and wrote the initial draft version of the manuscript. AF participated in the CMR exams and in the analysis of the CMR data. CM and ZS critically reviewed the manuscript. AY supervised the study, critically reviewed the manuscript and drafted the manuscript. All authors read and approved the final manuscript.



Compliance with ethical standards

Conflict of interest

The author declares that there is no competing interest.

Ethics approval and consent to participate

The study protocol complies with the Declaration of Helsinki. Written informed consent was obtained from every patient.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. 1.
    Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035. CrossRefPubMedGoogle Scholar
  2. 2.
    Neglia D, Michelassi C, Giovanna Trivieri M, Sambuceti G, Giorgetti A, Pratali L et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193. CrossRefPubMedGoogle Scholar
  3. 3.
    Crea F, Camici PG, Merz CNB (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35:1101–1111. CrossRefPubMedGoogle Scholar
  4. 4.
    Shome JS, Perera D, Plein S, Chiribiri A (2017) Current perspectives in coronary microvascular dysfunction. Microcirculation 24:e12340. CrossRefGoogle Scholar
  5. 5.
    Panting JR, Gatehouse PD, Yang G-Z, Grothues F, Firmin DN, Collins P et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953. CrossRefPubMedGoogle Scholar
  6. 6.
    Vermeltfoort IAC, Bondarenko O, Raijmakers PGHM., Odekerken DAM, Kuijper AFM, Zwijnenburg A et al (2007) Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? A cardiovascular MR study. Eur Heart J 28:1554–1558. CrossRefPubMedGoogle Scholar
  7. 7.
    Pack NA, DiBella EVR (2010) Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med 64:125–137. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Salerno M, Beller GA (2009) Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2:412–424. CrossRefPubMedGoogle Scholar
  9. 9.
    Mordini FE, Haddad T, Hsu L-Y, Kellman P, Lowrey TB, Aletras AH et al (2014) Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging 7:14–22. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koskenvuo JW, Sakuma H, Niemi P, Toikka JO, Knuuti J, Laine H et al (2001) Global myocardial blood flow and global flow reserve measurements by MRI and PET are comparable. J Magn Reson Imaging 13:361–366. CrossRefPubMedGoogle Scholar
  11. 11.
    Kato S, Saito N, Nakachi T, Fukui K, Iwasawa T, Taguri M et al (2017) Stress perfusion coronary flow reserve versus cardiac magnetic resonance for known or suspected CAD. J Am Coll Cardiol 70:869–879. CrossRefPubMedGoogle Scholar
  12. 12.
    Shomanova Z, Florian A, Bietenbeck M, Waltenberger J, Sechtem U, Yilmaz A (2017) Diagnostic value of global myocardial perfusion reserve assessment based on coronary sinus flow measurements using cardiovascular magnetic resonance in addition to myocardial stress perfusion imaging. Eur Hear J Cardiovasc Imaging 18:851–859. CrossRefGoogle Scholar
  13. 13.
    Schwitter J, DeMarco T, Kneifel S, von Schulthess GK, Jorg MC, Arheden H et al (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 101:2696–2702. CrossRefPubMedGoogle Scholar
  14. 14.
    van Rossum AC, Visser FC, Hofman MB, Galjee MA, Westerhof N, Valk J (1992) Global left ventricular perfusion: noninvasive measurement with cine MR imaging and phase velocity mapping of coronary venous outflow. Radiology 182:685–691. CrossRefPubMedGoogle Scholar
  15. 15.
    Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M (2013) MR myocardial perfusion imaging. Radiology 266:701–715. CrossRefPubMedGoogle Scholar
  16. 16.
    Doesch C, Seeger A, Hoevelborn T, Klumpp B, Fenchel M, Kramer U et al (2008) Adenosine stress cardiac magnetic resonance imaging for the assessment of ischemic heart disease. Clin Res Cardiol 97:905–912. CrossRefPubMedGoogle Scholar
  17. 17.
    Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y et al (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Knaapen P, Lubberink M (2008) Cardiac positron emission tomography: myocardial perfusion and metabolism in clinical practice. Clin Res Cardiol 97:791–796. CrossRefPubMedGoogle Scholar
  19. 19.
    Maddahi J, Packard RRS (2014) Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med 44:333–343. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M et al (2017) Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee DC, Johnson NP (2009) Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging. JACC Cardiovasc Imaging 2:761–770. CrossRefPubMedGoogle Scholar
  22. 22.
    Kawada N, Sakuma H, Yamakado T, Takeda K, Isaka N, Nakano T et al (1999) Hypertrophic cardiomyopathy: MR measurement of coronary blood flow and vasodilator flow reserve in patients and healthy subjects. Radiology 211:129–135. CrossRefPubMedGoogle Scholar
  23. 23.
    Karamitsos TD, Dass S, Suttie J, Sever E, Birks J, Holloway CJ et al (2013) Blunted myocardial oxygenation response during vasodilator stress in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 61:1169–1176. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Watzinger N, Lund GK, Saeed M, Reddy GP, Araoz PA, Yang M et al (2005) Myocardial blood flow in patients with dilated cardiomyopathy: Quantitative assessment with velocity-encoded cine magnetic resonance imaging of the coronary sinus. J Magn Reson Imaging 21:347–353. CrossRefPubMedGoogle Scholar
  25. 25.
    Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M et al (2015) No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Hear Fail 8:1088–1093. CrossRefGoogle Scholar
  26. 26.
    Bratis K, Child N, Terrovitis J, Nanas J, Felekos I, Aggeli C et al (2014) Coronary microvascular dysfunction in overt diabetic cardiomyopathy. IJC Metab Endocr 5:19–23. CrossRefGoogle Scholar
  27. 27.
    Opherk D, Schwarz F, Mall G, Manthey J, Baller D, Kübler W (1983) Coronary dilatory capacity in idiopathic dilated cardiomyopathy: Analysis of 16 patients. Am J Cardiol 51:1657–1662. CrossRefPubMedGoogle Scholar
  28. 28.
    Stolen KQ, Kemppainen J, Kalliokoski KK, Karanko H, Toikka J, Janatuinen T et al (2004) Myocardial perfusion reserve and peripheral endothelial function in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 93:64–68. CrossRefPubMedGoogle Scholar
  29. 29.
    Dimitrow PP, Galderisi M, Rigo F (2005) The non-invasive documentation of coronary microcirculation impairment: role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mathier MA, Rose GA, Fifer MA, Miyamoto MI, Dinsmore RE, Casta OHH et al (1998) Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 32:216–224. CrossRefPubMedGoogle Scholar
  31. 31.
    Abraham D, Hofbauer R, Schäfer R, Blumer R, Paulus P, Miksovsky A et al (2000) Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res 87:644–647. CrossRefPubMedGoogle Scholar
  32. 32.
    Luk A, Ahn E, Soor GS, Butany J (2009) Dilated cardiomyopathy: a review. J Clin Pathol 62:219–225. CrossRefPubMedGoogle Scholar
  33. 33.
    Sammut E, Zarinabad N, Wesolowski R, Morton G, Chen Z, Sohal M et al (2015) Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure. J Cardiovasc Magn Reson 17:13. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Feher A, Sinusas AJ (2017) Quantitative assessment of coronary microvascular function. Circ Cardiovasc Imaging 10:e006427. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Merkle N, Wöhrle J, Nusser T, Grebe O, Spiess J, Torzewski J et al (2010) Diagnostic performance of magnetic resonance first pass perfusion imaging is equally potent in female compared to male patients with coronary artery disease. Clin Res Cardiol 99:21–28. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany

Personalised recommendations