Skip to main content
Log in

Neonatal intestinal organoids as an ex vivo approach to study early intestinal epithelial disorders

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

Adult intestinal organoids have been used to study ex vivo intestinal injury in adulthood. However, the neonatal intestinal epithelium has many unique features that are different from adult mature intestine. Establishing a neonatal ex vivo organoid model is essential to study the epithelial physiology in early postnatal development and to investigate derangements associated with disease processes during the neonatal period like necrotizing enterocolitis (NEC).

Methods

Fresh and frozen terminal ileum was harvested from mice pups on postnatal day 9. Crypts were isolated and organoids were cultured. Organoids were exposed to hypoxia and lipopolysaccharide (LPS) for 48 h to induce epithelial injury. Inflammatory cytokines and tight junction proteins were evaluated.

Results

Robust intestinal organoids can be formed from both fresh and frozen intestinal tissue of neonatal mice pups. Hypoxia and LPS administration induced intestinal inflammation and disrupted tight junctions in these neonatal intestinal organoids.

Conclusions

We have established a novel method to grow organoids from neonatal intestine. We demonstrated that these organoids respond to the injury occurring during neonatal intestinal diseases such as NEC by increasing the organoid inflammation and by disrupting the organoid barrier function. Organoids provide an ex vivo platform to study intestinal physiology and pathology during the neonatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walton KD, Freddo AM, Wang S, Gumucio DL (2016) Generation of intestinal surface: an absorbing tale. Development 143(13):2261–2272. https://doi.org/10.1242/dev.135400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  3. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561. https://doi.org/10.1002/aja.1001410407

    Article  CAS  PubMed  Google Scholar 

  4. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. https://doi.org/10.1126/science.1234852

    Article  CAS  PubMed  Google Scholar 

  5. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18(4):618–623. https://doi.org/10.1038/nm.2695

    Article  CAS  PubMed  Google Scholar 

  6. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  7. Schweiger PJ, Jensen KB (2016) Modeling human disease using organotypic cultures. Curr Opin Cell Biol 43:22–29. https://doi.org/10.1016/j.ceb.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  8. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410. https://doi.org/10.1016/j.molmed.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Stenson WF (2013) Postnatal growth in the intestine. Curr Opin Gastroenterol 29(2):107–111. https://doi.org/10.1097/MOG.0b013e32835d9ec3

    Article  PubMed  Google Scholar 

  10. Herbst JJ, Sunshine P (1969) Postnatal development of the small intestine of the rat. Changes in mucosal morphology at weaning. Pediatr Res 3(1):27–33

    Article  CAS  PubMed  Google Scholar 

  11. Paran TS, Rolle U, Puri P (2006) Postnatal development of the mucosal plexus in the porcine small and large intestine. Pediatr Surg Int 22(12):997–1001. https://doi.org/10.1007/s00383-006-1786-5

    Article  PubMed  Google Scholar 

  12. Unthank JL, Lash JM, Bohlen HG (1990) Maturation of the rat intestinal microvasculature from juvenile to early adult life. Am J Physiol 259(2 Pt 1):G282–G289. https://doi.org/10.1152/ajpgi.1990.259.2.G282

    Article  CAS  PubMed  Google Scholar 

  13. Trahair JF (1989) Remodeling of the rat small intestinal mucosa during the suckling period. J Pediatr Gastroenterol Nutr 9(2):232–237

    Article  CAS  PubMed  Google Scholar 

  14. Dehmer JJ, Garrison AP, Speck KE, Dekaney CM, Van Landeghem L, Sun X, Henning SJ, Helmrath MA (2011) Expansion of intestinal epithelial stem cells during murine development. PLoS One 6(11):e27070. https://doi.org/10.1371/journal.pone.0027070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouwet EV, Heineman E, Buurman WA, ter Riet G, Ramsay G, Blanco CE (2002) Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period. Pediatr Res 51(1):64–70. https://doi.org/10.1203/00006450-200201000-00012

    Article  CAS  PubMed  Google Scholar 

  16. Baumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535(7610):85–93. https://doi.org/10.1038/nature18849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cummins AG, Thompson FM (1997) Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol 75(5):419–429. https://doi.org/10.1038/icb.1997.67

    Article  CAS  PubMed  Google Scholar 

  18. Lee C, Minich A, Li B, Miyake H, Seo S, Pierro A (2018) Influence of stress factors on intestinal epithelial injury and regeneration. Pediatr Surg Int 34(2):155–160. https://doi.org/10.1007/s00383-017-4183-3

    Article  PubMed  Google Scholar 

  19. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19(7):939–945. https://doi.org/10.1038/nm.3201

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Lee C, Filler T, Hock A, Wu RY, Li Q, Chen S, Koike Y, Ip W, Chi L, Zani-Ruttenstock E, Maattanen P, Gonska T, Delgado-Olguin P, Zani A, Sherman PM, Pierro A (2017) Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep 7:46616. https://doi.org/10.1038/srep46616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sodhi CP, Neal MD, Siggers R, Sho S, Ma C, Branca MF, Prindle T Jr, Russo AM, Afrazi A, Good M, Brower-Sinning R, Firek B, Morowitz MJ, Ozolek JA, Gittes GK, Billiar TR, Hackam DJ (2012) Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143(3):708–718 e705. https://doi.org/10.1053/j.gastro.2012.05.053

    Article  CAS  PubMed  Google Scholar 

  22. McElroy SJ, Castle SL, Bernard JK, Almohazey D, Hunter CJ, Bell BA, Al Alam D, Wang L, Ford HR, Frey MR (2014) The ErbB4 ligand neuregulin-4 protects against experimental necrotizing enterocolitis. Am J Pathol 184(10):2768–2778. https://doi.org/10.1016/j.ajpath.2014.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zani A, Cananzi M, Fascetti-Leon F, Lauriti G, Smith VV, Bollini S, Ghionzoli M, D’Arrigo A, Pozzobon M, Piccoli M, Hicks A, Wells J, Siow B, Sebire NJ, Bishop C, Leon A, Atala A, Lythgoe MF, Pierro A, Eaton S, De Coppi P (2014) Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 63(2):300–309. https://doi.org/10.1136/gutjnl-2012-303735

    Article  CAS  PubMed  Google Scholar 

  24. Ling X, Linglong P, Weixia D, Hong W (2016) Protective effects of bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 11(8):e0161635. https://doi.org/10.1371/journal.pone.0161635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, Dvorak B (2009) Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 297(5):G940–G949. https://doi.org/10.1152/ajpgi.00141.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Senger S, Ingano L, Freire R, Anselmo A, Zhu W, Sadreyev R, Walker WA, Fasano A (2018) Human fetal-derived enterospheres provide insights on intestinal development and a novel model to study necrotizing enterocolitis (NEC). Cell Mol Gastroenterol Hepatol 5(4):549–568. https://doi.org/10.1016/j.jcmgh.2018.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  27. Walsh AJ, Cook RS, Sanders ME, Arteaga CL, Skala MC (2016) Drug response in organoids generated from frozen primary tumor tissues. Sci Rep 6:18889. https://doi.org/10.1038/srep18889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by a Canadian Institutes of Health Research (CIHR) Foundation Grant 353857. AP is the Robert M. Filler Chair of Surgery, The Hospital for Sick Children (HSC). BL is the recipient of HSC Restracomp Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

BL, CL, and AP designed experiments; CL, MC, HM, DL, and RW performed experiments; BL, CL, and MC wrote the manuscript; AP provided advice and supervision; all the authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Agostino Pierro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lee, C., Cadete, M. et al. Neonatal intestinal organoids as an ex vivo approach to study early intestinal epithelial disorders. Pediatr Surg Int 35, 3–7 (2019). https://doi.org/10.1007/s00383-018-4369-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-018-4369-3

Keywords

Navigation