Tropical Indian Ocean and ENSO relationships in a changed climate

Abstract

We explore the current (1958–2005 period) and near future (2006–2050 period) teleconnections between El Niño Southern Oscillation (ENSO), Indian Ocean Basin Mode (IOBM), and Indian Ocean Dipole (IOD) as simulated in historical and Representative Concentration Pathway (RCP8.5) simulations of 32 coupled models that participated in the phase five of Coupled Model Intercomparison Project (CMIP5). A set of 16 CMIP5 models out of 32 models, which perform best to simulate tropical climate variability in recent decades, is first selected using a robust method based on the Empirical Orthogonal Function analysis for detailed analysis. Most of these models show modest capability in reproducing the seasonal cycle of ENSO types in the current period. Further, amplitude of Indian Ocean (IO) modes is overestimated by the 16 models along with large inter-model spread. Based on these results, a subset of 9 models is formed, which simulate a realistic seasonal phase-locking of ENSO for a robust assessment of future teleconnections. No significant change in El Niño amplitude is detected in near future. However, the IOBM is projected to be weaker during late spring and early summer. The IOD is projected to be stronger during boreal summer in the future relative to the current period. We also investigate if there are any changes from historical to RCP 8.5 simulations in the strength of the IO negative feedback on ENSO with a multiple linear regression approach. The IO negative feedback strengthens significantly in the RCP8.5 scenario due to the increasing role of IOBM in speeding the transition from El Niño to La Niña, despite its reduction of amplitude. In contrast, IOD loses its predictive value in the future projections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alexander MA, Bladé I, Newman M, Lazante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  2. Annamalai H, Taguchi B, McCreary JP, Nagura M, Miyama T (2017) Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes. J Clim 30:8159–8178. https://doi.org/10.1175/JCLI-D-16-0573.1

    Article  Google Scholar 

  3. Ashok K, Saji NH (2007) On the Impacts of ENSO and Indian Ocean dipole events on the sub-regional Indian summer monsoon rainfall. J Nat Hazards. https://doi.org/10.1007/s11069-006-9091-0

    Article  Google Scholar 

  4. Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean dipole. J Meteorol Soc Jpn 81:41–56

    Article  Google Scholar 

  5. Ashok K, Nagaraju C, Gupta AS et al (2014) Decadal changes in the relationship between the Indian and Australian summer monsoons. Clim Dyn 42:1043–1052. https://doi.org/10.1007/s00382-012-1625-4

    Article  Google Scholar 

  6. Bayr T, Dommenget D (2014) Comparing the spatial structure of variability in two datasets against each other on the basis of EOF-modes. ClimDyn 42:1631–1648. https://doi.org/10.1007/s00382-013-1708-x

    Article  Google Scholar 

  7. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330. https://doi.org/10.1029/2000GL011451

    Article  Google Scholar 

  8. Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1608–1705

    Article  Google Scholar 

  9. Bellenger et al (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7):1999–2018

    Article  Google Scholar 

  10. Boschat G, Terray P, Masson S (2012) Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Clim Dyn 38:2143–2165. https://doi.org/10.1007/s00382-011-1100-7

    Article  Google Scholar 

  11. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009. https://doi.org/10.1175/15200442(1999)012%3c1990:TENOSD%3e2.0.CO;2

    Article  Google Scholar 

  12. Cai W, Sullivan A, Cowan T (2009) Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophys Res Lett 36:L23704. https://doi.org/10.1029/2009GL040163

    Article  Google Scholar 

  13. Cai W, Santoso A, Wang G, Weller E, Lixin Wu, Ashok K et al (2014) Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510:254–258

    Article  Google Scholar 

  14. Cai W et al (2019) Pantropical climate interactions. Science 363:6430. https://doi.org/10.1126/science.aav4236

    Article  Google Scholar 

  15. Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274. https://doi.org/10.1175/JCLI-D-14-00439.1

    Article  Google Scholar 

  16. Chu J-E et al (2014) Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Clim Dyn 43:535–551. https://doi.org/10.1007/s00382-013-2002-7

    Article  Google Scholar 

  17. Clarke AJ (2008) An introduction to the dynamics of El Niño and the Southern Oscillation. Academic Press, London, p 308

    Google Scholar 

  18. Collins M, An S-I, Cai W et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. NatGeosci 3:391–397. https://doi.org/10.1038/NGEO868

    Article  Google Scholar 

  19. Cowan T, Cai W, Ng B, England M (2015) The Response of the Indian Ocean dipole asymmetry to anthropogenic aerosols and greenhouse gases. J Clim 28:2564–2583. https://doi.org/10.1175/JCLI-D-14-00661.1

    Article  Google Scholar 

  20. Cretat J, Terray P, Masson S, Sooraj KP, Roxy MK (2017) Indian Ocean and Indian Summer Monsoon: relationships without ENSO in ocean-atmosphere coupled simulations. Clim Dyn. https://doi.org/10.1007/s00382-016-3387-x

    Article  Google Scholar 

  21. Cretat J, Terray P, Masson S, Sooraj KP (2018) Intrinsic precursors and timescale of the tropical Indian Ocean Dipole : Insights from partially decoupled experiment. Clim Dyn 51:1311–1352. https://doi.org/10.1007/s00382-017-3956-7

    Article  Google Scholar 

  22. Dayan H, Izumo T, Vialard J, Lengaigne M, Masson S (2014) Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections? Clim Dyn. https://doi.org/10.1007/s00382-014-2254-x

    Article  Google Scholar 

  23. Draper N, Smith H (1998) Applied regression analysis, 3rd edn. JWiley, New York

    Google Scholar 

  24. Du Y, Xie S, Yang Y, Zheng X, Liu L, Huang G (2013) Indian Ocean variability in the CMIP5 multimodel ensemble: the basin mode. J Clim 26:7240–7266. https://doi.org/10.1175/JCLI-D-12-00678.1

    Article  Google Scholar 

  25. Fischer AP, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian Ocean Dipole zonal mode in a coupled GCM. J Clim 18:3428–3449

    Article  Google Scholar 

  26. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26

    Google Scholar 

  27. Ha K-J, Chu J-E, Lee J-Y, Yun K-S (2016) Interbasin coupling between the tropical Indian and Pacific Ocean on inter annual timescale: observation and CMIP5 reproduction. Clim Dyn. https://doi.org/10.1007/s00382-016-3087-6

    Article  Google Scholar 

  28. Ham YG, Kug JS (2014) ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Clim Dyn 43(1–2):305–318

    Article  Google Scholar 

  29. Ham YG, Choi JY, Kug JS (2017) The weakening of the ENSO–Indian Ocean dipole coupling strength in recent decades. Clim Dyn 49(1–2):249–261

    Article  Google Scholar 

  30. Hong CC, Li T, Ho L, Chen YC (2010) Asymmetry of the Indian Ocean basin wide SST anomalies: Roles of ENSO and IOD. JClim 23:3563–3576. https://doi.org/10.1175/2010JCLI3320.1

    Article  Google Scholar 

  31. Hu K, Huang G, Zheng XT, Xie SP, Qu X, Du Y, Liu L (2014) Interdecadal variations in ENSO influences on Northwest Pacific-East Asian early summertime climate simulated in CMIP5 Models. J Clim 27(15):5982–5998

    Article  Google Scholar 

  32. Izumo T et al (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Nino. Nat Geosci 3(3):168–172

    Article  Google Scholar 

  33. Izumo T, Lengaigne M, Vialard J, Luo J-J, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42:291–310. https://doi.org/10.1007/s00382-012-1628-1

    Article  Google Scholar 

  34. Jha B, Hu Z-Z, Kumar A (2014) SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Clim Dyn 42:2113–2212. https://doi.org/10.1007/s00382-013-1803-z

    Article  Google Scholar 

  35. Jourdain NC, Sen Gupta A, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102. https://doi.org/10.1007/s00382-013-1676-1

    Article  Google Scholar 

  36. Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29:637–658

    Article  Google Scholar 

  37. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  38. Krishnaswamy J, Srinivas V, Balaji R, Bonell M, Sankaran M, Bhalla RS, Badiger S (2014) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn. https://doi.org/10.1007/s00382-014-2288-0

    Article  Google Scholar 

  39. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  40. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Article  Google Scholar 

  41. Li G, Xie S-P, Du Y (2016) A robust but spurious pattern of climate change in model projections over the Tropical Indian Ocean. J Clim 29(5589):5608

    Google Scholar 

  42. Li G, Jian Y, Yang S et al (2019) Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Clim Dyn 52:6195–6212

    Article  Google Scholar 

  43. Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  44. Luo J-J et al (2010) Interaction between El Niño and Extreme Indian Ocean Dipole. J Clim. https://doi.org/10.1175/2009JCLI3104.1

    Article  Google Scholar 

  45. Marathe S, Ashok K, Swapna P, Sabin TP (2015) Revisiting El Niño Modokis. Clim Dyn 45:3527–3545. https://doi.org/10.1007/s00382-015-2555-8

    Article  Google Scholar 

  46. Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105(C2):3295–3306

    Article  Google Scholar 

  47. Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85:335–348

    Article  Google Scholar 

  48. Ohba M, Watanbe M (2012) Role of the Indo-Pacific interbasin coupling in predicting asymmetric enso transition and duration. J Clim 25:3321–3334

    Article  Google Scholar 

  49. Rashid HA, Hirst AC, Marsland SJ (2016) An atmospheric mechanism for ENSO amplitude changes under an abrupt quadrupling of CO2 concentration in CMIP5 models. Geophys Res Lett 43:1687–1694. https://doi.org/10.1002/2015GL066768

    Article  Google Scholar 

  50. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  51. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull AmerMeteorolSoc 89:303–311

    Google Scholar 

  52. Richter I (2015) Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Clim Change 6:345–358

    Google Scholar 

  53. Roxy M, Drbohlav H-KL, Gualdi S, Navarra A (2011) Seasonality in the relationship between El Nino and Indian Ocean dipole. Clim Dyn. https://doi.org/10.1007/s00382-010-0876-1221-236

    Article  Google Scholar 

  54. Roxy MK, Rikita K, Terray P, Masson S (2014) The curious case of Indian Ocean Warming. J Clim 27:8501–8508. https://doi.org/10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  55. Saji NH (2018) The Indian ocean dipole. Oxford Research Encyclopedia of Climate Science, Retrieved 20 Jan 2021. https://doi.org/10.1093/acrefore/9780190228620.013.619

  56. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  57. Shinoda T, Hendon HH, Alexander MA (2004) Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep Sea Res 51:619–635

    Article  Google Scholar 

  58. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. https://doi.org/10.1175/2007JCLI2100.1

    Article  Google Scholar 

  59. Sterl A, van Oldenborgh GJ, Hazeleger W, Burgers G (2007) On the robustness of ENSO teleconnections. Clim Dyn 29:469–485. https://doi.org/10.1007/s00382-007-0251-z

    Article  Google Scholar 

  60. Stevenson SL (2012) Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. GeophysResLett 39:1–5. https://doi.org/10.1029/2012GL052759

    Article  Google Scholar 

  61. Sun S, Lan J, Fang YT, Gao X (2015) A Triggering Mechanism for the Indian Ocean Dipoles Independent of ENSO. J Clim 28:5063–5076. https://doi.org/10.1175/JCLI-D-14-00580.1

    Article  Google Scholar 

  62. Tao W, Huang G, Hu K, Qu X, Wen G, Gong H (2015) Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models. Int J Climatol 35:391–407

    Article  Google Scholar 

  63. Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885. https://doi.org/10.1175/JCLI-D-13-00437.1

    Article  Google Scholar 

  64. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  65. Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533. https://doi.org/10.1007/s00382-015-2715-x

    Article  Google Scholar 

  66. Vecchi GA, Clement A, Soden BJ (2008) Examining the Tropical Pacific’s response to global warming EOS. Trans Am Geophys Union 89(9):81–83

    Article  Google Scholar 

  67. Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484 ((ISBN 0521 450713))

    Google Scholar 

  68. Wang C (2019) Three ocean interactions and climate variability: a review and perspective. Clim Dyn 53:5119–5136

    Article  Google Scholar 

  69. Wang C, Zhang L, Lee S, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. https://doi.org/10.1038/NCLIMATE2118

    Article  Google Scholar 

  70. Wang G, Dommenget D, Frauen C (2015) An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim Dyn 44:95–114. https://doi.org/10.1007/s00382-014-2154-0

    Article  Google Scholar 

  71. Wang H, Kumar A, Murtugudde R et al (2019) Covariations between the Indian Ocean dipole and ENSO: a modeling study. Clim Dyn 53:5743–5761. https://doi.org/10.1007/s00382-019-04895-x

    Article  Google Scholar 

  72. Weare BC (2013) El Nino teleconnections in CMIP5 models. Clim Dyn 41:2165–2177. https://doi.org/10.1007/s00382-012-1537-3

    Article  Google Scholar 

  73. Weller E et al (2016) Human-caused Indo-Pacific warm pool expansion. Sci Adv 2(7):e1501719. https://doi.org/10.1126/sciadv.1501719

    Article  Google Scholar 

  74. Xie SP, Kosaka Y, Du Y et al (2016) Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. https://doi.org/10.1007/s00376-015-5192-6

    Article  Google Scholar 

  75. Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. https://doi.org/10.1029/2006GL028571

    Article  Google Scholar 

  76. Yang Y, Xie SP, Wu L et al (2015) Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J Clim 28:8021–8036. https://doi.org/10.1175/JCLI-D-15-0078.1

    Article  Google Scholar 

  77. Yang K, Cai W, Huang G, Wang G, Ng B, Li S (2020) Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean Dipole nonlinearity. Geophys Res Lett 46:e2020GL089396

    Google Scholar 

  78. Zhang T, Sun D (2014) ENSO asymmetry in CMIP5 models. J Clim 27:4070–4093. https://doi.org/10.1175/JCLI-D-13-00454.1

    Article  Google Scholar 

  79. Zhao S, Jin F-F, Stuecker MF (2019) Improved predictability of the Indian Ocean dipole using seasonally modulated enso forcing forecasts. Geophys Res Lett 46:9989–9990. https://doi.org/10.1029/2019GL084196

    Article  Google Scholar 

  80. Zheng X-T, Xie SP, Liu Q (2011) Response of the Indian Ocean Basin mode and its capacitor effect to Global Warming. J Clim 24:6146–6164

    Article  Google Scholar 

  81. Zheng XT, Xie SP, Du Y et al (2013) Indian ocean dipole response to global warming in the CMIP5 multimodel ensemble. J Clim 26:6067–6080. https://doi.org/10.1175/JCLI-D-12-00638.1

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the climate modeling groups, the Program for Climate Model Diagnosis and Intercomparison, and the World Climate Research Programme’s working Group on coupled modelling, for making available the “CMIP5” multi-model data sets.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shamal Marathe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2075 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marathe, S., Terray, P. & Karumuri, A. Tropical Indian Ocean and ENSO relationships in a changed climate. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05641-y

Download citation

Keywords

  • ENSO
  • IOD
  • IOBM
  • Teleconnections
  • CMIP5
  • Lead correlations