North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model

Abstract

The response of the North Pacific storm track to the mesoscale sea surface temperature (SST) in winter is investigated via a global high-resolution atmospheric model. A simulation forced by eddy-resolving SST is compared with a simulation in which the mesoscale SST is filtered out. The results show that removing the mesoscale SST could greatly influence the storm track in the free atmosphere, with a significant decrease of approximately 20% in the local region and a southward shift downstream over the eastern North Pacific. Compared with those in previous studies, the responses of the storm track seem to be independent from models. The underlying mechanism is that changes in the boundary layer induced by mesoscale SST lead to convergence at the surface through pressure adjustment, forcing a secondary circulation along Kuroshio and Oyashio confluence region (KOCR). Then the winter mean vertical eddy fluxes are greatly suppressed over KOCR after removing the mesoscale SST, transporting less heat and moisture into the free atmosphere. Furthermore, the response of baroclinicity and baroclinic energy conversion was investigated, which bears much resemblance with the changes of storm track, indicating the important role on the response of storm track to mesoscale SST.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    Article  Google Scholar 

  2. Bishop SP, Small RJ, Bryan FO, Tomas RA (2017) Scale dependence of midlatitude air–sea interaction. J Clim 30:8207–8221. https://doi.org/10.1175/JCLI-D-17-0159.1

    Article  Google Scholar 

  3. Booth JF, Thompson LA, Patoux J, Kelly KA, Dickinson S (2010) The signature of the midlatitude tropospheric storm tracks in the surface winds. J Clim 23:1160–1174. https://doi.org/10.1175/2009JCLI3064.1

    Article  Google Scholar 

  4. Booth JF, Kwon YO, Ko S, Small RJ, Msadek R (2017) Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J Clim 30:4965–4981. https://doi.org/10.1175/JCLI-D-16-0228.1

    Article  Google Scholar 

  5. Bryan FO, Tomas RA, Dennis JM, Chelton DB, Loeb NG, Mcclean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23:6277–6291. https://doi.org/10.1175/2009JCLI3064.1

    Article  Google Scholar 

  6. Cai M, Yang S, Dool H, Kousky VE (2007) Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective. Tellus A 59:127–140. https://doi.org/10.1111/j.1600-0870.2006.00213.x

    Article  Google Scholar 

  7. Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J Clim 15:2163–2183. https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2

    Article  Google Scholar 

  8. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978. https://doi.org/10.1126/science.1091901

    Article  Google Scholar 

  9. Chen L, Jia Y, Liu Q (2017) Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J Oceanogr 73:295–307. https://doi.org/10.1007/s10872-016-0403-z

    Article  Google Scholar 

  10. Chu C, Hu H, Yang XQ (2020) Midlatitude atmospheric transient eddy feedbacks influenced enso-associated wintertime pacific teleconnection patterns in two PDO phases. Clim Dyn 54:257–2595. https://doi.org/10.1007/s00382-020-05134-4

    Article  Google Scholar 

  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  12. Feliks Y, Ghil M, Simonnet E (2004) Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J Atmos Sci 61:961–981. https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2

    Article  Google Scholar 

  13. Foussard A, Lapeyre G, Plougonven R (2018) Storm track response to oceanic eddies in idealized atmospheric simulations. J Clim 32:445–463. https://doi.org/10.1175/JCLI-D-18-0415.1

    Article  Google Scholar 

  14. Foussard A, Lapeyre G, Plougonven R (2019) Response of surface wind divergence to mesoscale SST anomalies under different wind conditions. J Atmos Sci. https://doi.org/10.1175/JAS-D-18-0204.1

    Article  Google Scholar 

  15. Frankignoul C, Sennéchael N, Kwon YO, Alexander MA (2011) Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J Clim 24:762–777. https://doi.org/10.1175/2010JCLI3731.1

    Article  Google Scholar 

  16. Frenger I, Gruber N, Knutti R, Munnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6:608–612. https://doi.org/10.1038/ngeo1863

    Article  Google Scholar 

  17. Gan B, Wu L (2013) Seasonal and long-term coupling between wintertime storm tracks and sea surface temperature in the North Pacific. J Clim 26:6123–6136. https://doi.org/10.1175/JCLI-D-12-00724.1

    Article  Google Scholar 

  18. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864. https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2

    Article  Google Scholar 

  19. Hoskins BJ, Hodges KI (2002) New Perspectives on the Northern Hemisphere Winter Storm Tracks. J Atmos Sci 59:1041–1061. https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2

    Article  Google Scholar 

  20. Jia Y, Chang P, Szunyogh I, Saravanan R, Bacmeister JT (2019) A modeling strategy for the investigation of the effect of mesoscale SST variability on atmospheric dynamics. Geophys Res Lett 46:3982–3989. https://doi.org/10.1029/2019GL081960

    Article  Google Scholar 

  21. Joyce TM, Kwon Y, Yu L (2009) On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J Clim 22:3177–3192. https://doi.org/10.1175/2008JCLI2690.1

    Article  Google Scholar 

  22. Koseki S, Watanabe M (2010) Atmospheric boundary layer response to mesoscale sst anomalies in the kuroshio extension. J Climate 23:2492–2507. https://doi.org/10.1175/2009JCLI2915.1

    Article  Google Scholar 

  23. Kuwano-Yoshida A, Minobe S (2017) Storm-track response to SST fronts in the Northwestern pacific Region in an AGCM. J Climate 30:1081–1102. https://doi.org/10.1175/JCLI-D-16-0331.1

    Article  Google Scholar 

  24. Lau NC, Nath MJ (1991) Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J Atmos Sci 48:2589–2613. https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2

    Article  Google Scholar 

  25. Lee S, Kim H (2003) The dynamical relationship between subtropical and eddy-driven jets. J Atmos Sci 60:1490–1503. https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2

    Article  Google Scholar 

  26. Lin P, Liu H, Ma J, Li Y (2019) Ocean mesoscale structure–induced air–sea interaction in a high-resolution coupled model. Atmos Ocean Sci Lett 12:98–106. https://doi.org/10.1080/16742834.2019.1569454

    Article  Google Scholar 

  27. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

    Article  Google Scholar 

  28. Liu JW, Zhang SP, Xie SP (2013) Two Types of Surface Wind Response to the East China Sea Kuroshio Front. J Clim 26:8616–8627. https://doi.org/10.1175/JCLI-D-12-00092.1

    Article  Google Scholar 

  29. Liu X, Chang P, Kurian J, Saravanan R, Lin X (2018) Satellite-observed precipitation response to ocean mesoscale eddies. J Climate 31:6879–6895. https://doi.org/10.1175/JCLI-D-17-0668.1

    Article  Google Scholar 

  30. Ma X, Chang P, Saravanan R, Montuoro HJ, Wu D et al (2015) Distant influence of Kuroshio Eddies on North pacific weather patterns? Sci Rep 5:17785. https://doi.org/10.1038/srep17785

    Article  Google Scholar 

  31. Ma X, Chang P, Saravanan R, Montuoro R, Nakamura H, Wu D et al (2017) Importance of resolving Kuroshio front and eddy influence in simulating the North pacific storm track. J Clim 30:1861–1880. https://doi.org/10.1175/JCLI-D-16-0154.1

    Article  Google Scholar 

  32. Masunaga R, Nakamura H, Miyasaka T, Nishii K, Tanimoto Y (2015) Separation of climatological imprints of the Kuroshio extension and Oyashio fronts on the wintertime atmospheric boundary layer: their sensitivity to SST resolution prescribed for atmospheric reanalysis. J Clim 28:1764–1787. https://doi.org/10.1175/JCLI-D-14-00314.1

    Article  Google Scholar 

  33. Masunaga R, Nakamura H, Miyasaka T, Nishii K, Qiu B (2016) Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio extension. J Clim 29:3273–3296. https://doi.org/10.1175/JCLI-D-15-0545.1

    Article  Google Scholar 

  34. Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf stream on the troposphere. Nature 452:206. https://doi.org/10.1038/nature06690

    Article  Google Scholar 

  35. Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks,jet streams and midlatitude oceanic fronts. Earth's Climate:The Ocean-Atmosphere Interaction. Geophys. Monogr., vol 147. American Geophysical Union, pp329–346. https://doi.org/10.1029/147GM18

  36. Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie S-P (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35:L15709. https://doi.org/10.1029/2008GL034010

    Article  Google Scholar 

  37. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168. https://doi.org/10.1175/JCLI-D-12-00236.1

    Article  Google Scholar 

  38. Parfitt R, Czaja A, Kwon YO (2017) The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air–sea interaction. Geophys Res Lett 44:3246–3254. https://doi.org/10.1002/2017GL073028

    Article  Google Scholar 

  39. Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E (2016) Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Clim Dyn 46:1699–1717. https://doi.org/10.1007/s00382-015-2669-z

    Article  Google Scholar 

  40. Révelard A, Frankignoul C, Sennéchael N, Kwon YO, Qiu B (2016) Influence of the decadal variability of the Kuroshio extension on the atmospheric circulation in the cold season. J Clim 29:2123–2144. https://doi.org/10.1175/JCLI-D-15-0511.1

    Article  Google Scholar 

  41. Sampe T, Nakamura H, Goto A, Ohfuchi W (2010) Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J Clim 23:1793–1814. https://doi.org/10.1175/2009JCLI3163.1

    Article  Google Scholar 

  42. Seager R, Naik N, Ting M, Cane M, Harnik N, Kushnir Y (2010) Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific-North America sector. Q J R Meteorol Soc 136:277–296. https://doi.org/10.1002/qj.588

    Article  Google Scholar 

  43. Small RJ, Bryan FO, Bishop SP, Tomas RA (2019) air–sea turbulent heat fluxes in climate models and observational analyses: what drives their variability? J Clim 32:2397–2421. https://doi.org/10.1175/JCLI-D-18-0576.1

    Article  Google Scholar 

  44. Small RJ et al (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001

    Article  Google Scholar 

  45. Straus DM, Shukla J (1997) Variations of midlatitude transient dynamics associated with ENSO. J Atmos Sci 54:777–790. https://doi.org/10.1175/1520-0469(1997)054<0777:VOMTDA>2.0.CO;2

    Article  Google Scholar 

  46. Taguchi B, Nakamura H, Nonaka M, Xie S-P (2009) Influences of the Kuroshio/Oyashio extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J Clim 22:6536–6560. https://doi.org/10.1175/2009JCLI2910.1

    Article  Google Scholar 

  47. Takatama K, Minobe S, Inatsu M, Small RJ (2012) Diagnostics for near-surface wind convergence/divergence response to the Gulf Stream in a regional atmospheric model. Atmos Sci Lett 13:16–21. https://doi.org/10.1002/asl.355

    Article  Google Scholar 

  48. Tokinaga H, Tanimoto Y, Xie SP, Sampe T, Tomita H, Ichikawa H (2009) Ocean frontal effects on the vertical development of clouds over the western North Pacific: in situ and satellite observations. J Clim 22:4241–4260. https://doi.org/10.1175/2009JCLI2763.1

    Article  Google Scholar 

  49. Trenberth KE (1991) Storm tracks in the Southern hemisphere. J Atmos Sci 48:2159–2178. https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2

    Article  Google Scholar 

  50. Wallace JM, Mitchell TP, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial pacific: seasonal and interannual variability. J Clim 2:1492–1499. https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2

    Article  Google Scholar 

  51. Yao Y, Zhong Z, Yang XQ (2018) Impacts of the subarctic frontal zone on the North Pacific storm track in the cold season: an observational study. Inter J Climatol 38:2554–3256. https://doi.org/10.1002/joc.5429

    Article  Google Scholar 

  52. Yao Y, Zhong Z, Yang XQ, Wei L (2017) An observational study of the North Pacific storm-track impact on the midlatitude oceanic front. J Geophys Res Atmos 122:6962–6975. https://doi.org/10.1002/2016JD026192

    Article  Google Scholar 

  53. Zhang C, Liu H, Li C, Lin P (2019) Impacts of Mesoscale Sea surface temperature anomalies on the meridional shift of North Pacific storm track. Int J Climatol 39:5124–5139. https://doi.org/10.1002/joc.6130

    Article  Google Scholar 

  54. Zhang Y, Held IM (1999) A linear stochastic model of a GCM's midlatitude storm tracks. J Atmos Sci 56:3416–3435. https://doi.org/10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant Nos. 41490642, 41576025, 41776030 and 41806034). We appreciate three reviewers for their suggestions to improve the manuscript substantially.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hailong Liu or Chongyin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, H., Xie, J. et al. North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Clim Dyn (2020). https://doi.org/10.1007/s00382-020-05343-x

Download citation

Keywords

  • Storm track
  • Mesoscale SST
  • Air–sea interaction
  • CAM4