Teleconnection-based evaluation of seasonal forecast quality

Abstract

In response to the high demand for more skillful climate forecasts at the seasonal timescale, innovative climate prediction systems are developed with improved physics and increased spatial resolution. Alongside the model development process, seasonal predictions need to be evaluated on past years to provide robust information on the forecast performance. This work presents the quality assessment of the Météo-France coupled climate prediction system, taking advantage of an experiment performed with 90 ensemble members over a 37-year re-forecast period from 1979 to 2015. We focus on the boreal winter season initialised in November. Beyond typical skill measures we evaluate the model capability in reproducing ENSO and NAO teleconnections on precipitation and near surface temperature respectively. Such an assessment is carried out first through a composite analysis, and shows that the model succeeds in reproducing the main patterns for near surface temperature and precipitation. A covariance method leads to consistent results. Finally we find that the teleconnection representation of the model is not affected by shortening the verification period and reducing the ensemble size and therefore can be used to evaluate operational seasonal forecast systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    The first two domains, SAFR and SEA are selected following the geographical definition of Giorgi and Francisco (2000), while the last domain EBR is chosen selecting an area with observed signal of N3.4 over precipitation.

References

  1. Adler R et al (2003) The version 2 global precipitation climatology project (gpcp) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  2. Alonso-Balmaseda M, Mogensen KS, Weaver AT (2012) Evaluation of the ecmwf ocean reanalysis oras4. https://doi.org/10.1002/qj.2063

  3. Anderson DLT, Sarachik ES, Webster PJ, Rothstein LM (1998) The toga decade: reviewing the progress of el niño research and prediction. J Geophys Res 103(C7):14167–14510. https://doi.org/10.1029/98JC00112

    Article  Google Scholar 

  4. Ardilouze C, Batté L, Decharme B, Déqué M (2019) On the link between summer dry bias over the US great plains and seasonal temperature prediction skill in a dynamical forecast system. Weather Forecast 34(4):1161–1172. https://doi.org/10.1175/WAF-D-19-0023.1

    Article  Google Scholar 

  5. Athanasiadis PJ et al (2017) A multisystem view of wintertime nao seasonal predictions. J Clim 30(4):1461–1475. https://doi.org/10.1175/JCLI-D-16-0153.1

    Article  Google Scholar 

  6. Batté L, Déqué M (2016) Randomly correcting model errors in the arpege-climate v6.1 component of cnrm-cm: applications for seasonal forecasts. Geosci Model Dev 9:2055–2076. https://doi.org/10.5194/gmd-9-2055-2016

    Article  Google Scholar 

  7. Brönnimann S (2007) Impact of El Niño-southern oscillation on european climate. Rev Geophys 45:RG3003

    Article  Google Scholar 

  8. Butler AH et al (2016) The climate-system historical forecast project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q J R Meteorol Soc 142:1413–1427. https://doi.org/10.1002/qj.2743

    Article  Google Scholar 

  9. Cassou C (2008) Intraseasonal interaction between the madden-julian oscillation and the north atlantic oscillation. Nature 455:523–527. https://doi.org/10.1038/nature07286

    Article  Google Scholar 

  10. Dee DP et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  11. Deser C, Simpson I, McKinnon KA, Phillips AS (2017) The northern hemisphere extratropical atmospheric circulation response to enso: how well do we know it and how do we evaluate models accordingly? J Clim 30:5059–5082

    Article  Google Scholar 

  12. Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) The skill of multi-model seasonal forecasts of the wintertime north atlantic oscillation. Clim Dyn 21:501–514. https://doi.org/10.1007/s00382-003-0350-4

    Article  Google Scholar 

  13. Doblas-Reyes FJ, García-Serrano J, Lienert F, Pintó-Biescas A, Rodrigues LRL (2013) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268. https://doi.org/10.1002/wcc.217

    Article  Google Scholar 

  14. Douville H (2010) Relative contributions of soil and snow hydrology to seasonal climate predictability: a pilot study. Clim Dyn 34:797–818. https://doi.org/10.1007/s00382-008-0508-1

    Article  Google Scholar 

  15. Dunstone N, Smith D, Scaife A, Hermanson L, Eade R, Robinson N, Andrews M, Knight J (2016) Skilful predictions of the winter north atlantic oscillation one year ahead. Nat Geosci 9:809–814

    Article  Google Scholar 

  16. Frauen C, Dommenget D, Tyrrell N, Rezny M, Wales S (2014) Analysis of the nonlinearity of el niño-southern oscillation teleconnections. J Clim 27(16):6225–6244. https://doi.org/10.1175/JCLI-D-13-00757.1

    Article  Google Scholar 

  17. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the hadcm2 coupled aogcm. Clim Dyn 16(2):169–182. https://doi.org/10.1007/PL00013733

    Article  Google Scholar 

  18. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40(1):245–272. https://doi.org/10.1007/s00382-012-1481-2

    Article  Google Scholar 

  19. Guérémy J, Déqué M, Braun A, Piedeliévre J (2005) Actual and potential skill of seasonal predictions using the cnrm contribution to demeter: coupled versus uncoupled model. Tellus 57A:308–319

    Article  Google Scholar 

  20. Guérémy J (2011) A continuous buoyancy based convection scheme: one- and three-dimensional validation. Tellus 63A:687–706. https://doi.org/10.1111/j.1600-0870.2011.00521.x

    Article  Google Scholar 

  21. Guo Y, Ting M, Wen Z, Lee DE (2017) Distinct patterns of tropical pacific sst anomaly and their impacts on north american climate. J Clim 30(14):5221–5241. https://doi.org/10.1175/JCLI-D-16-0488.1

    Article  Google Scholar 

  22. Huang B, et al (2015) Extended reconstructed sea surface temperature (ersst), version 4. https://doi.org/10.7289/V5KD1VVF

  23. Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the north atlantic oscillation. Clim Change 36:301–326. https://doi.org/10.1023/A:1005314315270

    Article  Google Scholar 

  24. Hurrell JW, Kushnir Y, Ottersen G (2003) An overview of the north atlantic oscillation. Geophys Monogr. https://doi.org/10.1029/134GM01

    Article  Google Scholar 

  25. Jung T et al (2016) Advancing polar prediction capabilities on daily to seasonal time scales. Bull Am Meteorol Soc 97:1631–1647. https://doi.org/10.1175/BAMS-D-14-00246.1

    Article  Google Scholar 

  26. Kang D et al (2014) Prediction of the arctic oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys Res Lett 41(10):3577–3585. https://doi.org/10.1002/2014GL060011

    Article  Google Scholar 

  27. Kumar A, Hu Z, Jha B, Peng P (2017) Estimating enso predictability based on multi-model hindcasts. Clim Dyn 48:39–51. https://doi.org/10.1007/s00382-016-3060-4

    Article  Google Scholar 

  28. López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the north atlantic oscillation (nao) on combinedtemperature and precipitation winter modes in the mediterranean mountains:observed relationships and projections for the 21st century. Glob Planet Change 77(1–2):62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003

    Article  Google Scholar 

  29. Madec G (2008) NEMO ocean engine. Scientific notes of climate modelling center, vol 27. Institut Pierre-Simon Laplace (IPSL). Zenodo. https://doi.org/10.5281/zenodo.1464816

  30. Manubens N et al (2018) An r package for climate forecast verification. Environ Model Softw 103:29–42. https://doi.org/10.1016/j.envsoft.2018.01.018

    Article  Google Scholar 

  31. Mariotti A, Zeng N, Lau K-M (2002) Euro-mediterranean rainfall and enso - a seasonally varying relationshipGep. Geophys Res Lett. https://doi.org/10.1029/2001GL014248

    Article  Google Scholar 

  32. Marshall A, Scaife A (2009) Impact of the qbo on surface winter climate. J Geophys Res 114(D18):110. https://doi.org/10.1029/2009JD011737

    Article  Google Scholar 

  33. Molteni F, Stockdale TN, Vitart F (2015) Understanding and modelling extra-tropical teleconnections with the indo-pacific region during the northern winter. Clim Dyn 45:3119–3140

    Article  Google Scholar 

  34. O’Reilly CH, Heatley J, MacLeod D, Weisheimer A, Palmer TN, Schaller N, Woollings T (2017) Variability in seasonal forecast skill of northern hemisphere winters over the twentieth century. Geophys Res Lett 44(11):5729–5738. https://doi.org/10.1002/2017GL073736

    Article  Google Scholar 

  35. Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the gecco oceanic synthesis: effects on the north atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  36. Riddle EE, Butler AH, Furtado JC, Cohen JL, Kumar A (2013) Cfsv2 ensemble prediction of the wintertime arctic oscillation. Clim Dyn 41:1099–1116. https://doi.org/10.1007/s00382-013-1850-5

    Article  Google Scholar 

  37. Rodó X, Baert E, Comín F (1997) Variations in seasonal rainfall in southern europe during the present century: relationships with the north atlantic oscillation and the el niño-southern oscillation. Clim Dyn 13(4):275–284. https://doi.org/10.1007/s003820050165

    Article  Google Scholar 

  38. Rogers JC, van Loon H (1979) The seesaw in winter temperature between greenland and northern europe. Part ii: some oceanic and atmospheric effects in middle and high latitudes. Mon Weather Rev 107(5):509–519. https://doi.org/10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2

    Article  Google Scholar 

  39. Rojas M, Li LZ, Kanakidou M, Hatzianastassiou N, Seze G, Treut HL (2013) Winter weather regimes over the mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn 41(3):551–571

    Article  Google Scholar 

  40. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the el niño/southern oscillation. Mon Weather Rev 115(8):1606–1626. https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

    Article  Google Scholar 

  41. Salas y Melia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172. https://doi.org/10.1016/S1463-5003(01)00015-4

    Article  Google Scholar 

  42. Scaife AA et al (2014) Skillful long-range prediction of european and north american winters. Geophys Res Lett 41(7):2514–2519. https://doi.org/10.1002/2014GL059637

    Article  Google Scholar 

  43. Scaife A et al (2017) Tropical rainfall, rossby waves and regional winter climate predictions. Q J R Meteorol Soc 143(702):1–11. https://doi.org/10.1002/qj.2910

    Article  Google Scholar 

  44. Shaman J (2014) The seasonal effects of enso on european precipitation: observational analysis. J Clim 27(17):6423–6438. https://doi.org/10.1175/JCLI-D-14-00008.1

    Article  Google Scholar 

  45. Siegert S, Bellprat O, Ménégoz M, Stephenson D, Doblas-Reyes F (2017) Detecting improvements in forecast correlation skill: statistical testing and power analysis. Mon Weather Rev 145(2):437–450. https://doi.org/10.1175/MWR-D-16-0037.1

    Article  Google Scholar 

  46. Siegert S, Stephenson DB, Sansom PG, Scaife AA, Eade R, Arribas A (2016) A bayesian framework for verification and recalibration of ensemble forecasts: How uncertain is nao predictability? J Clim 29(3):995–1012. https://doi.org/10.1175/JCLI-D-15-0196.1

    Article  Google Scholar 

  47. Smith DM, Scaife AA, Kirtman BP (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7(1):015602

    Article  Google Scholar 

  48. Trenberth KE (1997) The definition of el niño. Bull Am Meteorol Soc 78(12):2771–2778. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2

    Article  Google Scholar 

  49. Valcke S (2013) The oasis3 coupler: a european climate modelling community software. Geosci Model Dev 6:373–388. https://doi.org/10.5194/gmd-6-373-2013

    Article  Google Scholar 

  50. van Loon H, Rogers JC (1978) The seesaw in winter temperatures between greenland and northern europe. Part i: general description. Mon Weather Rev 106(3):296–310. https://doi.org/10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2

    Article  Google Scholar 

  51. Voldoire A et al (2013) The cnrm-cm5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  52. Voldoire A et al (2017) Surfex v8.0 interface with oasis3-mct to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geosci Model Dev 10:4207–4227. https://doi.org/10.5194/gmd-10-4207-2017

    Article  Google Scholar 

  53. Waugh DW, Sobel AH, Polvani LM (2017) What is the polar vortex and how does it influence weather? Bull Am Meteorol Soc 98(1):37–44. https://doi.org/10.1175/BAMS-D-15-00212.1

    Article  Google Scholar 

  54. Weisheimer A, Schaller N, O’Reilly C, MacLeod DA, Palmer T (2017) Atmospheric seasonal forecasts of the twentieth century: multi-decadal variability in predictive skill of the winter north atlantic oscillation (nao) and their potential value for extreme event attribution. Q J R Meteorol Soc 143(703):917–926. https://doi.org/10.1002/qj.2976

    Article  Google Scholar 

  55. Zwiers FW, von Storch H (1995) Taking serial correlation into account in tests of the mean. J Clim 8(2):336–351. https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support for this study from Copernicus Climate Change Service (project C3S-433) and the MEDSCOPE project under the European Research Area for Climate Services (ERA4CS) co-funded by the Horizon 2020 Framework Programme of the European Union (Grant agreement 690462). During the revision of the manuscript the author D.V. was founded by the H2020 Marie Skłodowska Curie project LISTEN (Grant agreement 799930). GPCP Precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. ERA-Interim data are provided by the ECMWF, Reading, UK from their Web site at http://apps.ecmwf.int/datasets/. The authors acknowledge the useful suggestions and technical support of Constantin Ardilouze and Laurent Dorel. We acknowledge the s2dverification R-language-based software package (Manubens et al. 2018) developers, as this package was used for the data analysis and the visualization of the results presented in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Danila Volpi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volpi, D., Batté, L., Guérémy, J. et al. Teleconnection-based evaluation of seasonal forecast quality. Clim Dyn (2020). https://doi.org/10.1007/s00382-020-05327-x

Download citation

Keywords

  • Seasonal climate prediction
  • Teleconnection
  • ENSO
  • NAO