Benefits of representing floodplains in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version

Abstract

Tropical floodplains have a significant impact on the regional water cycle and on land-atmosphere interaction but are not always considered in Land Surface Models (LSMs) or in Earth system models. This study evaluates the importance of representing tropical floodplains in an LSM to provide realistic river discharges, evapotranspiration fluxes and other variables crucial for land’s interaction with the ocean and atmosphere. Off-line simulations of the world’s largest tropical wetland, the Pantanal are conducted with ORCHIDEE, the LSM of IPSL’s regional and global Earth system model. We analyse the period 1961–2000, which includes both dry and wet decades. Atmospheric uncertainty is considered through the utilization of three forcing data sets, each one in two versions: the original dataset and a regionally bias adjusted version. The activation of the floodplain module leads to a systematic improvement of intra-annual variability and extremes of river discharge. Temporal evolution and spatial distribution of flooded area are coherent with satellite estimations, although the model, due to the coarse resolution of the topography, underestimates the extent of the area. Considering floodplains in ORCHIDEE enhance the evapotranspiration since it permits the water from the upstream region to evaporate in the plains. This have strong consequences on the water balance and on the spatial pattern of surface fluxes. The simulations allow us to perform a model-guided residual estimation of evapotranspiration through a water balance obtaining an annual evapotranspiration over Pantanal of 1220 mm while precipitation is estimated to be 1250 mm with an uncertainty of 180 mm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Adam L, Döll P, Prigent C, Papa F (2010) Global-scale analysis of satellite-derived time series of naturally inundated areas as a basis for floodplain modeling. Adv Geosci. https://doi.org/10.5194/adgeo-27-45-2010

    Article  Google Scholar 

  2. Alho CJR (2005) The World’s largest wetlands. Ecol Conserv. https://doi.org/10.1017/CBO9780511542091

    Article  Google Scholar 

  3. Alho CJ, Silva JS (2012) Effects of severe floods and droughts on wildlife of the pantanal wetland (Brazil)-a review. Animals. https://doi.org/10.3390/ani2040591

    Article  Google Scholar 

  4. Alho CJR, Lacher TE, Gonçalves HC (1988) Environmental degradation in the Pantanal ecosystem. Bioscience. https://doi.org/10.2307/1310449

    Article  Google Scholar 

  5. Alsdorf D, Han SC, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ. https://doi.org/10.1016/j.rse.2010.05.020

    Article  Google Scholar 

  6. Barros V, Chamorro L, Coronel G, Baez J (2005) The major discharge events in the Paraguay River: magnitudes, source regions, and climate forcings. J Hydrometeorol. https://doi.org/10.1175/jhm-378.1

    Article  Google Scholar 

  7. Barros V, Clarke R, Silva Dias P (2006) El cambio climático en la cuenca Del Plata. Consejo Nacional de Investigaciones Cientificas y Técnicas - CONICET

  8. Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata Basin in South America. J Hydrometeorol. https://doi.org/10.1175/1525-7541(2002)003<0630:thcotl>2.0.co;2

    Article  Google Scholar 

  9. Bergier I (2013) Effects of highland land-use over lowlands of the Brazilian Pantanal. Sci Total Environ 463–464:1060–1066. https://doi.org/10.1016/j.scitotenv.2013.06.036

    Article  Google Scholar 

  10. Bhuiyan MAE, Nikolopoulos EI, Anagnostou EN, Polcher J, Albergel C, Dutra E, Fink G, Martínez-De La Torre A, Munier S (2019) Assessment of precipitation error propagation in multi-model global water resource reanalysis. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-23-1973-2019

    Article  Google Scholar 

  11. Bierkens MF (2015) Global hydrology 2015: state, trends, and directions. Water Resour Res. https://doi.org/10.1002/2015WR017173

    Article  Google Scholar 

  12. Bravo JM, Allasia D, da Paz AR, Collischonn W, Tucci CE (2012) Coupled hydrologic-hydraulic modeling of the Upper Paraguay River Basin. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000494

    Article  Google Scholar 

  13. Brunner GW (2002) HEC-RAS, river analysis system User’s manual version 3.1

  14. Campoy A, Ducharne A, Cheruy F, Hourdin F, Polcher J, Dupont JC (2013) Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J Geophys Res Atmos. https://doi.org/10.1002/jgrd.50627

    Article  Google Scholar 

  15. Carril AF, Menéndez CG, Remedio AR, Robledo F, Sörensson A, Tencer B, Boulanger JP, de Castro M, Jacob D, Le Treut H, Li LZ, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39(12):2747–2768. https://doi.org/10.1007/s00382-012-1573-z

    Article  Google Scholar 

  16. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, BroNnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. https://doi.org/10.1002/qj.776

  17. da Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CE (2010) Large-scale hydrodynamic modeling of a complex river network and floodplains. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000162

    Article  Google Scholar 

  18. da Paz AR, Collischonn W, Tucci CEM, Padovani CR (2011) Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol Process. https://doi.org/10.1002/hyp.7926

    Article  Google Scholar 

  19. da Paz AR, Collischonn W, Bravo JM, Bates PD, Baugh C (2014) The influence of vertical water balance on modelling Pantanal (Brazil) spatio-temporal inundation dynamics. Hydrol Process. https://doi.org/10.1002/hyp.9897

    Article  Google Scholar 

  20. de Almeida TIR, Penatti NC, Ferreira LG, Arantes AE, do Amaral CH (2015) Principal component analysis applied to a time series of MODIS images: the spatio-temporal variability of the Pantanal wetland, Brazil. Wetlands Ecol Manag. https://doi.org/10.1007/s11273-015-9416-4

    Article  Google Scholar 

  21. De Rosnay P, Bruen M, Polcher J (2000) Sensitivity of surface fluxes to the number of layers in the soil model used in GCMs. Geophys Res Lett. https://doi.org/10.1029/2000GL011574

    Article  Google Scholar 

  22. de Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes. J Geophys Res. https://doi.org/10.1029/2001jd000634

    Article  Google Scholar 

  23. D’Orgeval T (2006) Impact du changement climatique sur le cycle de l’eau en Afrique de l’Ouest: modélisation et incertitudes. PhD thesis, Universite Paris VI

  24. D’Orgeval T, Polcher J, De Rosnay P (2008) Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-12-1387-2008

    Article  Google Scholar 

  25. Ducharne A, Golaz C, Leblois E, Laval K, Polcher J, Ledoux E, de Marsily G (2003) Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM. J Hydrol 280(1–4):207–228. https://doi.org/10.1016/S0022-1694(03)00230-0

    Article  Google Scholar 

  26. Gonçalves H, Mercante M, Santos E (2011) Hydrological cycle. Br J Biol 71(1 suppl 1):241–253. https://doi.org/10.1590/S1519-69842011000200003

    Article  Google Scholar 

  27. Guimberteau M, Drapeau G, Ronchail J, Sultan B, Polcher J, Martinez JM, Prigent C, Guyot JL, Cochonneau G, Espinoza JC, Filizola N, Fraizy P, Lavado W, De Oliveira E, Pombosa R, Noriega L, Vauchel P (2012) Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-16-911-2012

    Article  Google Scholar 

  28. Guimberteau M, Ronchail J, Espinoza JC, Lengaigne M, Sultan B, Polcher J, Drapeau G, Guyot JL, Ducharne A, Ciais P (2013) Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins. Environ Res Lett. https://doi.org/10.1088/1748-9326/8/1/014035

    Article  Google Scholar 

  29. Hamilton SK (2002) Hydrological Controls of Ecological Structure and Function in the Pantanal Wetland (Brazil). IAHS Special Publication The Ecohydrology of South American Rivers and Wetlands

  30. Hamilton SK, Sippel SJ, Melack J (1996) Inundation patterns in the Pantanal Wetland of South America determined from passive microwave remote sensing. Archiv für Hydrobiologie

  31. Hamilton SK (1999) Potential effects of a major navigation project (Paraguay-Paraná Hidrovía) on inundation in the Pantanal floodplains. Regulat Rivers 15(4):289–299. https://doi.org/10.1002/(SICI)1099-1646(199907/08)15:4<289::AID-RRR520>3.0.CO;2-I

    Article  Google Scholar 

  32. Harding R, Best M, Blyth E, Hagemann S, Kabat P, Tallaksen LM, Warnaars T, Wiberg D, Weedon GP, van Lanen H, Ludwig F, Haddeland I (2011) WATCH: current knowledge of the terrestrial global water cycle. J Hydrometeorol. https://doi.org/10.1175/jhm-d-11-024.1

    Article  Google Scholar 

  33. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  34. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):119. https://doi.org/10.1029/2008JD010201

    Article  Google Scholar 

  35. Jones PD, Lister DH, Harpham C, Rusticucci M, Penalba O (2013) Construction of a daily precipitation grid for southeastern South America for the period 1961–2000. Int J Climatol. https://doi.org/10.1002/joc.3605

    Article  Google Scholar 

  36. Jönsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci. https://doi.org/10.1016/j.cageo.2004.05.006

    Article  Google Scholar 

  37. Kim H (2017) Global soil wetness project phase 3 atmospheric boundary conditions (Experiment 1). Data Integrat Anal Syst. https://doi.org/10.20783/DIAS.501 [Data set]

    Article  Google Scholar 

  38. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles. https://doi.org/10.1029/2003GB002199

    Article  Google Scholar 

  39. Lauwaet D, van Lipzig NPM, Van Weverberg K, De Ridder K, Goyens C (2012) The precipitation response to the desiccation of Lake Chad. Q J R Meteorol Soc. https://doi.org/10.1002/qj.942

    Article  Google Scholar 

  40. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamazaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ. https://doi.org/10.1016/j.rse.2011.08.015

    Article  Google Scholar 

  41. Lehner B, Döll P (2004) Global lakes and wetlands database GLWD. J Hydrol

  42. Li L, Hao ZC, Wang JH, Wang ZH, Yu ZB (2008) Impact of future climate change on runoff in the head region of the Yellow River. J Hydrol Eng. https://doi.org/10.1061/(asce)1084-0699(2008)13:5(347)

    Article  Google Scholar 

  43. Li X, Jiang F, Li L, Wang G (2011) Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period Xinjiang. Int J Climatol, China. https://doi.org/10.1002/joc.2181

    Google Scholar 

  44. Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86(11):1567–1570. https://doi.org/10.1175/BAMS-86-11-1567

    Article  Google Scholar 

  45. Mishra V, Cherkauer KA, Bowling LC (2010) Parameterization of lakes and wetlands for energy and water balance studies in the great lakes region. J Hydrometeorol. https://doi.org/10.1175/2010JHM1207.1

    Article  Google Scholar 

  46. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol. https://doi.org/10.1002/joc.1181

    Article  Google Scholar 

  47. Montini TL, Jones C, Carvalho LMV (2019) The South American low-level jet: a new climatology, variability, and changes. J Geophys Res 124(3):1200–1218. https://doi.org/10.1029/2018JD029634

    Article  Google Scholar 

  48. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  49. Nardi F, Annis A, Baldassarre GD, Vivoni ER, Grimaldi S (2019) GFPLAIN250m, a global high-resolution dataset of earth’s floodplains. Sci Data. https://doi.org/10.1038/sdata.2018.309

    Article  Google Scholar 

  50. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim. https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  51. New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J Clim

  52. Ngo-Duc T, Oki T, Kanae S (2007) A variable streamflow velocity method for global river routing model: model description and preliminary results. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hessd-4-4389-2007

    Article  Google Scholar 

  53. Nguyen-Quang T, Polcher J, Ducharne A, Arsouze T, Zhou X, Schneider A, Fita L (2018) ORCHIDEE-ROUTING: Revising the river routing scheme using a high-resolution hydrological database. Geosci Model Dev. https://doi.org/10.5194/gmd-11-4965-2018

    Article  Google Scholar 

  54. Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems

  55. Padovani (2010) Dinâmica Espaço-Temporal das Inundações do Pantanal. PhD thesis, Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo

  56. Penatti NC, de Almeida TIR, Ferreira LG, Arantes AE, Coe MT (2015) Satellite-based hydrological dynamics of the world’s largest continuous wetland. Remote Sens Environ. https://doi.org/10.1016/j.rse.2015.08.031

    Article  Google Scholar 

  57. Polcher J (2003) Les processus de surface à l’échelle globale et leurs interactions avec l’atmosphère. PhD thesis, Habilitation à diriger des recherches. Université Paris VI

  58. Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res. https://doi.org/10.1029/2000WR900130

    Article  Google Scholar 

  59. Rochetin N, Couvreux F, Guichard F (2017) Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2935

    Article  Google Scholar 

  60. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Monthly Weather Rev. https://doi.org/10.1175/mwr3305.1

    Article  Google Scholar 

  61. Schamm K, Ziese M, Becker A, Finger P, Meyer-Christoffer A, Schneider U, Schröder M, Stender P (2014) Global gridded precipitation over land: a description of the new GPCC First Guess Daily product. Earth Syst Sci Data 6(1):49–60. https://doi.org/10.5194/essd-6-49-2014

    Article  Google Scholar 

  62. Schneider U, Finger P, Meyer-Christoffer A, Rustemeier E, Ziese M, Becker A (2017) Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 8(12):52. https://doi.org/10.3390/atmos8030052

    Article  Google Scholar 

  63. Sheng M, Lei H, Jiao Y, Yang D (2017) Evaluation of the runoff and river routing schemes in the community land model of the Yellow River Basin. J Adv Model Earth Syst 9(8):2993–3018. https://doi.org/10.1002/2017MS001026

    Article  Google Scholar 

  64. Sutcliffe J, Brown E (2018) Water losses from the Sudd. Hydrol Sci J 63(4):527–541. https://doi.org/10.1080/02626667.2018.1438612

    Article  Google Scholar 

  65. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  66. Taylor CM (2010) Feedbacks on convection from an African wetland. Geophys Res Lett. https://doi.org/10.1029/2009gl041652

    Article  Google Scholar 

  67. Taylor CM, Prigent C, Dadson SJ (2018) Mesoscale rainfall patterns observed around wetlands in sub-Saharan Africa. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3311

    Article  Google Scholar 

  68. Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva Dias MA, Silva Dias P, Zipser E (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87(1):63–77. https://doi.org/10.1175/BAMS-87-1-63

    Article  Google Scholar 

  69. Viovy N (2018) CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model

  70. Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Glob Biogeochem Cycles 14(2):599–621. https://doi.org/10.1029/1999GB900092

    Article  Google Scholar 

  71. Wang F, Polcher J, Peylin P, Bastrikov V (2018) Assimilation of river discharge in a land surface model to improve estimates of the continental water cycles. Hydrol Earth Syst Sci 22(7):3863–3882. https://doi.org/10.5194/hess-22-3863-2018

    Article  Google Scholar 

  72. Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH Forcing data methodology applied to ERA-Interim reanalysis data. Water Resour Res. https://doi.org/10.1002/2014WR015638

    Article  Google Scholar 

  73. Zhou J, Lau KM, Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040. https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by PICT 2014-0887, PICT-2015-3097, PICT-2017-1406 (ANPCyT, Argentina), Belmont Forum/ANR-15-JCL/-0002-01 “CLIMAX” as well as ECOS-A18D04 (MINCyT, Argentina / ECOS-Sud, France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony Schrapffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schrapffer, A., Sörensson, A., Polcher, J. et al. Benefits of representing floodplains in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version. Clim Dyn (2020). https://doi.org/10.1007/s00382-020-05324-0

Download citation

Keywords

  • Land Surface Models
  • Floodplains
  • Land-atmosphere interaction
  • South America