Direct impacts of different types of El Niño in developing summer on East Asian precipitation

Abstract

This study revisits the impacts of different types of El Niño on East Asian summer precipitation (EASP) with observed and re-analyzed data from 1958 to 2015. It focuses on the boreal summer preceding peaks of El Niño when prominent SST anomalies are mainly situated in the tropical Pacific. Distinct responses of EASP are obtained for the three identified types of SST anomalies noted as summer EP (Eastern Pacific) El Niño, summer MP (Mixed-type Pacific) El Niño, and summer CP (Central Pacific) El Niño. In the case of summer EP El Niño, there is a robust south-north rainfall dipole with anomalous dry conditions in North China and wet conditions in Southeast China. Such a rainfall pattern is mainly attributed to a low-pressure anomaly over Northeast Asia. For summer MP El Niño, it presents a tripolar pattern of precipitation anomalies with wetness along the Yangtze-Huaihe River valley and dryness in both South and North China. This is due to the presence of low-pressure anomalies over Northeast China and a westward shift of the Western Pacific Subtropical High. Summer CP El Niño shows a triangle-pattern of precipitation anomalies with wet conditions in both southern and northern China, but dry conditions in the Jianghuai region (north of the Yangtze River in East China), caused by low-pressure anomalies over central-north China.

Further study investigates how different types of summer El Niño induce different changes of the Walker circulation and associated large-scale convergence/divergence outside the tropics, and ultimately provoke different responses of atmospheric circulation. For summer EP El Niño, tropical perturbations over the east-central tropical Pacific and over North India can enter into the subtropical jet and make a mid-latitude low pressure belt response at upper levels of the atmosphere. For summer MP El Niño, the perturbation over the east-central tropical Pacific seems ineffective in transmitting atmospheric anomalies to mid-latitudes. As a result, they are mainly confined to the tropics and lead to a general rise of the upper-level geopotential height over the entire tropics. However, the perturbation over Northwest Africa can excite northeastward propagating Rossby waves in mid-high latitudes. For summer CP El Niño, the induced fluctuant wave train within the subtropical jet is likely the competing effect of perturbations over the east-central tropical Pacific, North India and North Africa. Furthermore, for all the three types of summer El Niño, perturbations can trigger a similar low-level meridional wave train along the East Asian coast through the monsoon trough. However, a slight westward shift of the wave train makes a sensitive impact on EASP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    In this paper, unless otherwise specified, El Niño refers to both the warm and cold phase of El Nino—Southern Oscillation.

References

  1. Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  2. Alexander MA, Blade I, Newman M et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  3. Ashok K, Behera SK , Rao SA, et al. 2007, El Niño Modoki and its possible teleconnection. J Geophys Res, 112(C11007)

  4. Barsugli JJ, Shin SI, Sardeshmukh PD (2006) Sensitivity of global warming to the pattern of tropical ocean warming. Clim Dyn 27(5):483–492

    Article  Google Scholar 

  5. Chen G, Tam CY (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37(1):70–75

    Article  Google Scholar 

  6. Chen M, Xie P, Janowiak JE, et al. 2004, Verifying the reanalysis and climate models outputs using a 56-year data set of reconstructed global precipitation. Seattle, Wash: Paper Presented at 14th AMS Conference on Applied Climatology, Am Meteorol Soc, J6.1

  7. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteorol Soc 137:553–597

    Article  Google Scholar 

  8. Feng J, Li J (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res 116:D13102

    Article  Google Scholar 

  9. Feng J, Chen W, Tam CY et al (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31(14):2091–2101

    Article  Google Scholar 

  10. Feng J, Li J, Zheng F et al (2016) Contrasting impacts of developing phases of two types of El Niño on Southern China Rainfall. J Meteorol Soc Jpn 94(4):359–370

    Article  Google Scholar 

  11. Gao H, Wang YG (2007) On the Weakening relationship between summer precipitation in China and ENSO. Acta Meteorol Sin 65(1):131–137

    Google Scholar 

  12. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  13. Graf H, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J Geophys Res 117:D01102

    Article  Google Scholar 

  14. Graf H-F, Zanchettin D, Timmreck C, Bittner M (2014) Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Clim Dyn 43:3245. https://doi.org/10.1007/s00382-014-2101-0

    Article  Google Scholar 

  15. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  16. Kalney E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  17. Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632

    Article  Google Scholar 

  18. Kosaka Y, Nakamura H (2010) Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan pattern, J Clim 23:5085–5108

    Google Scholar 

  19. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515

    Article  Google Scholar 

  20. Kug J-S, Ahn M-S, Sung M-K et al (2010) Statistical relationship between two types of El Niño events and climate variation over Korean Peninsula. Asia-Pac J Atmos Sci 46(4):467–474

    Article  Google Scholar 

  21. Kumar A, Hoerling MP (2003) The nature and causes for the delayed atmospheric response to El Niño. J Clim 16:1391–1403

    Article  Google Scholar 

  22. Kumar KK, Rajagopalan B, Hoerling M et al (2006) Unraveling the mystery of Indian Monsoon failure during El Niño. Science 314(5796):115–119

    Article  Google Scholar 

  23. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32(16):3613–3619

    Article  Google Scholar 

  24. Li ZX, Conil S (2003) Transient response of an atmospheric GCM to North Atlantic SST anomalies. J Clim 16:3993–3998

    Article  Google Scholar 

  25. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45(2):RG2005

    Article  Google Scholar 

  26. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Article  Google Scholar 

  27. Pascolini-Campbell M, Zanchettin D, Bothe O, Timmreck C, Matei D, Jungclaus JH, Graf H-F (2014) Toward a record of Central Pacific El Niño events since 1880. Theor Appl Climatol 1:1. https://doi.org/10.1007/s00704-014-1114-2

    Article  Google Scholar 

  28. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  29. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626

    Article  Google Scholar 

  30. Song H-J, Choi E, Lim G-H et al (2011) The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. J Geophys Res 116:D21113

    Google Scholar 

  31. Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  32. Trenberth KE, Branstator GW, Karoly D et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324

    Article  Google Scholar 

  33. Wang B, Wu R, Li T (2003) Atmosphere-warm ocean interaction and its impact on Asian-Australian Monsoon variability. J Clim 16:1195–1211

    Article  Google Scholar 

  34. Wang Z, Chang CP, Wang B et al (2005) Teleconnections from tropics to Northern extratropics through a southerly conveyor. J Clim 62:4057–4070

    Google Scholar 

  35. Wen N, Liu ZY, Liu YH (2015) Direct impact of El Niño on East Asian summer precipitation in the observation. Clim Dyn 44:2979–2987

    Article  Google Scholar 

  36. Wen N, Liu ZY, Li L (2019) Direct ENSO impact on East Asian summer precipitation in the developing summer. Clim Dyn 52(11):6799–6815

    Article  Google Scholar 

  37. Weng H, Ashok K, Behera SK et al (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29(2–3):113–129

    Article  Google Scholar 

  38. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32(5):663–674

    Article  Google Scholar 

  39. Yeh SW, Kug JS, Dewitte B et al (2009) El Niño in a changing climate. Nature 462(7263):674–674

    Article  Google Scholar 

  40. Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia-Pac J Atmos Sci 50(1):69–81

    Article  Google Scholar 

  41. Yuan C, Wang D (2019) Interdecadal variations in El Niño-Southern oscillation impacts on the autumn precipitation in the eastern China. Int J Climatol. https://doi.org/10.1002/joc.6156

    Article  Google Scholar 

  42. Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25(21):7702–7722

    Article  Google Scholar 

  43. Yuan C, Liu J, Luo J, Guan Z (2019) Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J Clim. https://doi.org/10.1175/JCLI-D-18-0588.1

    Article  Google Scholar 

  44. Zhang QY, Tao SY (2003) The anomalous subtropical anticyclone in Western Pacific and their association with circulation over East Asia during Summer. Chin J Atmos Sci 27(3):369–380

    Google Scholar 

  45. Zhang W, Jin FF, Li J et al (2011) Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J Meteorol Soc Jpn 89(5):563–569

    Article  Google Scholar 

  46. Zhang W, Wang Z, Stuecker MF et al (2019) Impact of ENSO longitudinal position on teleconnections to the NAO. Clim Dyn 52(1–2):257–274

    Article  Google Scholar 

  47. Zong HF, Chen LT, Zhang QY (2010) The instability of the interannual relationship between ENSO and the summer rainfall in China. Chin J Atmos Sci 34(1):184–192

    Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Zhengyu Liu and Tim Li for the constructive discussions. This work is supported by Chinese NSFC41475089. L Li acknowledges the support of the National Key Research and Development Program of China (Grant-2018YFC1507704).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Na Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1493 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, N., Li, L. & Luo, J. Direct impacts of different types of El Niño in developing summer on East Asian precipitation. Clim Dyn (2020). https://doi.org/10.1007/s00382-020-05315-1

Download citation

Keywords

  • Different types of El Niño
  • East Asian summer precipitation
  • El Niño developing stage