Future hydroclimatological changes in South America based on an ensemble of regional climate models

  • Pablo G. Zaninelli
  • Claudio G. Menéndez
  • Magdalena Falco
  • Noelia López-Franca
  • Andrea F. Carril
Article

Abstract

Changes between two time slices (1961–1990 and 2071–2100) in hydroclimatological conditions for South America have been examined using an ensemble of regional climate models. Annual mean precipitation (P), evapotranspiration (E) and potential evapotranspiration (EP) are jointly considered through the balances of land water and energy. Drying or wetting conditions, associated with changes in land water availability and atmospheric demand, are analysed in the Budyko space. The water supply limit (E limited by P) is exceeded at about 2% of the grid points, while the energy limit to evapotranspiration (E = EP) is overall valid. Most of the continent, except for the southeast and some coastal areas, presents a shift toward drier conditions related to a decrease in water availability (the evaporation rate E/P increases) and, mostly over much of Brazil, to an increase in the aridity index (Ф = EP/P). These changes suggest less humid conditions with decreasing surface runoff over Amazonia and the Brazilian Highlands. In contrast, Argentina and the coasts of Ecuador and Peru are characterized by a tendency toward wetter conditions associated with an increase of water availability and a decrease of aridity index, primarily due to P increasing faster than both E and EP. This trend towards wetter soil conditions suggest that the chances of having larger periods of flooding and enhanced river discharges would increase over parts of southeastern South America. Interannual variability increases with Ф (for a given time slice) and with climate change (for a given aridity regimen). There are opposite interannual variability responses to the cliamte change in Argentina and Brazil by which the variability increases over the Brazilian Highlands and decreases in central-eastern Argentina.

Keywords

Hydroclimate of South America Climate change Budyko space Aridity index Regional climate models 

Notes

Acknowledgements

This research was supported by projects PICT 2014-0887 (ANPCyT, Argentina), PIP 112-201501-00402CO (CONICET, Argentina), PICT2015-3097 (ANPCyT, Argentina) and LEFE (AO2015-876370, France). We thank E.H. Berbery, R. Ruscica and A. Sörensson for their comments on the manuscript. Figures 4 and 5 were made with R package “ggplot2” (Wickham 2009).

Compliance with ethical standards

Conflict of interest

The authors declare that they have not conflict of interest.

References

  1. Adler RF, Huffman GJ, Chang A, et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2CrossRefGoogle Scholar
  2. Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265:164–177.  https://doi.org/10.1016/S0022-1694(02)00101-4 CrossRefGoogle Scholar
  3. Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33:893–916.  https://doi.org/10.1007/s00382-008-0488-1 CrossRefGoogle Scholar
  4. Boulanger J, Carril A, Sanchez E (2016) CLARIS-La Plata Basin: regional hydroclimate variability, uncertainties and climate change scenarios. Clim Res 68:93–94.  https://doi.org/10.3354/cr01392 CrossRefGoogle Scholar
  5. Budyko MI (1974) Climate and life. International geophysical series, vol 18. Academic Press, New YorkGoogle Scholar
  6. Budyko MI (1982) The earth’s climate: past and future. Academic Press, New York, p 307 1982.Google Scholar
  7. Carrão H, Naumann G, Barbosa P (2017) Global projections of drought hazard in a warming climate: a prime for disaster risk management. Clim Dyn 1–19.  https://doi.org/10.1007/s00382-017-3740-8
  8. Carril AF, Menéndez CG, Remedio ARC et al (2012) Performance of a multi-RCM ensemble for South Eastern South America. Clim Dyn 39:2747–2768.  https://doi.org/10.1007/s00382-012-1573-z CrossRefGoogle Scholar
  9. Carril A, Cavalcanti I, Menéndez C et al (2016) Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Clim Res 68:95–116.  https://doi.org/10.3354/cr01374 CrossRefGoogle Scholar
  10. Castro M, Fernández C, Gaertner MA (1993) Description of a mesoscale atmospheric numerical model. Math Clim Environ 230–253Google Scholar
  11. Cavalcanti IFA, Carril AF, Penalba OC et al (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol 523:211–230.  https://doi.org/10.1016/j.jhydrol.2015.01.028 CrossRefGoogle Scholar
  12. Chen M, Shi W, Xie P et al (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110.  https://doi.org/10.1029/2007JD009132 Google Scholar
  13. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  14. Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Intergovernmental Panel on Climate Change (ed) Climate change 2013—the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308.  https://doi.org/10.1017/CBO9781107415324.028
  15. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res 114:D10108.  https://doi.org/10.1029/2008JD010212 CrossRefGoogle Scholar
  17. Field CB, Barros VR, Dokken DJ, Mach KJ MDM, et al (2014) Climate change 2014: impacts, adaptation, and vulnerability : Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  18. Franchito SH, Reyes JFP, D Pareja (2014) Surrogate climate change scenario and projections with a regional climate model: impact on the aridity in South America. Am J Clim Change 03:474–489CrossRefGoogle Scholar
  19. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Change 62:195–209.  https://doi.org/10.1016/j.gloplacha.2008.02.002 CrossRefGoogle Scholar
  20. Gordon C, Cooper C, Senior CA et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168.  https://doi.org/10.1007/s003820050010 CrossRefGoogle Scholar
  21. Greve P, Seneviratne SI (2015) Assessment of future changes in water availability and aridity. Geophys Res Lett 42:5493–5499.  https://doi.org/10.1002/2015GL064127 CrossRefGoogle Scholar
  22. Greve P, Orlowsky B, Mueller B et al (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7:716–721.  https://doi.org/10.1038/ngeo2247 CrossRefGoogle Scholar
  23. Greve P, Gudmundsson L, Orlowsky B, Seneviratne SI (2016) A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrol Earth Syst Sci 20:2195–2205.  https://doi.org/10.5194/hess-20-2195-2016 CrossRefGoogle Scholar
  24. Jacob D, Van den Hurk BJJM., Andræ U et al (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43.  https://doi.org/10.1007/s007030170015 CrossRefGoogle Scholar
  25. Jaramillo F, Destouni G (2014) Developing water change spectra and distinguishing change drivers worldwide. Geophys Res Lett 41:8377–8386.  https://doi.org/10.1002/2014GL061848 CrossRefGoogle Scholar
  26. Karlsson K-G, Riihelä A, Müller R et al (2013) CLARA-A1: a cloud, albedo, and radiation dataset from 28 year of global AVHRR data. Atmos Chem Phys 13:5351–5367.  https://doi.org/10.5194/acp-13-5351-2013 CrossRefGoogle Scholar
  27. Koster RD, Suarez MJ (1999) A simple framework for examining the interannual variability of land surface moisture fluxes. J Clim 12:1911–1917. https://doi.org/10.1175/1520-0442(1999)012<1911:ASFFET>2.0.CO;2CrossRefGoogle Scholar
  28. Llopart M, Coppola E, Giorgi F, da Rocha R, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125(1):111–125CrossRefGoogle Scholar
  29. López-Franca N, Zaninelli PG, Carril AF et al (2016) Changes in temperature extremes for 21st century scenarios over South America derived from a multi-model ensemble of regional climate models. Clim Res.  https://doi.org/10.3354/cr01393 Google Scholar
  30. Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change. Clim Res 68:231–241.  https://doi.org/10.3354/cr01373 CrossRefGoogle Scholar
  31. Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim 24:1801–1820.  https://doi.org/10.1175/2010JCLI3874.1 CrossRefGoogle Scholar
  32. Mueller B, Hirschi M, Jimenez C et al (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci Discuss 10:769–805.  https://doi.org/10.5194/hessd-10-769-2013 CrossRefGoogle Scholar
  33. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781.  https://doi.org/10.5194/hess-17-1765-2013 CrossRefGoogle Scholar
  34. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  35. Penalba OC, Rivera JA (2013) Future changes in drought characteristics over southern South America projected by a CMIP5 multi-model ensemble. Am J Clim Change 2:173–182.  https://doi.org/10.4236/ajcc.2013.23017 CrossRefGoogle Scholar
  36. Penalba OC, Rivera JA (2015) Comparación de seis índices para el monitoreo de sequías meteorológicas en el sur de Sudamérica. In: Meteorologica, vol 40. Centro Argentino de Meteorólogos, pp 33–57Google Scholar
  37. Roderick ML, Sun F, Lim WH, Farquhar GD (2014) A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol Earth Syst Sci 18:1575–1589.  https://doi.org/10.5194/hess-18-1575-2014 CrossRefGoogle Scholar
  38. Roeckner E, Brokopf R, Esch M et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791.  https://doi.org/10.1175/JCLI3824.1 CrossRefGoogle Scholar
  39. Ruscica RC, Sörensson AA, Menéndez CG (2015) Pathways between soil moisture and precipitation in southeastern South America. Atmos Sci Lett 16(3):267–272.  https://doi.org/10.1002/asl2.552 CrossRefGoogle Scholar
  40. Ruscica RC, Menéndez CG, Sörensson AA (2016) Land surface–atmosphere interaction in future South American climate using a multi-model ensemble. Atmos Sci Lett 17:141–147.  https://doi.org/10.1002/asl.635 CrossRefGoogle Scholar
  41. Samuelsson P, Jones CG, Willén U et al (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus A Dyn Meteorol Oceanogr 63:4–23.  https://doi.org/10.1111/j.1600-0870.2010.00478.x CrossRefGoogle Scholar
  42. Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Clim Dyn.  https://doi.org/10.1007/s00382-014-2466-0 Google Scholar
  43. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230CrossRefGoogle Scholar
  44. Sherwood S, Fu Q (2014) A drier future? Science 343:737–739.  https://doi.org/10.1126/science.1247620 CrossRefGoogle Scholar
  45. Sörensson AA, Menéndez CG (2011) Summer soil precipitation coupling in South America. Tellus Ser A Dyn Meterol Oceanogr 63:56–68CrossRefGoogle Scholar
  46. Sörensson AA, Ruscica RC (2018) Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resour Res.  https://doi.org/10.1002/2017WR021682 Google Scholar
  47. van der Velde Y, Vercauteren N, Jaramillo F et al (2014) Exploring hydroclimatic change disparity via the Budyko framework. Hydrol Process 28:4110–4118.  https://doi.org/10.1002/hyp.9949 CrossRefGoogle Scholar
  48. Vicente-Serrano SM, Beguería S, López-Moreno JI et al (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718.  https://doi.org/10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  49. Wickham H (2009) ggplot2: elegant graphics for data analysis, version 2.0.0. Springer, New YorkCrossRefGoogle Scholar
  50. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pablo G. Zaninelli
    • 1
    • 2
    • 3
    • 4
  • Claudio G. Menéndez
    • 1
    • 2
    • 3
  • Magdalena Falco
    • 1
    • 2
    • 3
  • Noelia López-Franca
    • 1
    • 2
    • 3
  • Andrea F. Carril
    • 1
    • 2
    • 3
  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA)CONICET, Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI/CNRS-CONICET-UBA)Buenos AiresArgentina
  4. 4.Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataBuenos AiresArgentina

Personalised recommendations