An effective drift correction for dynamical downscaling of decadal global climate predictions

  • Heiko Paeth
  • Jingmin Li
  • Felix Pollinger
  • Wolfgang A. Müller
  • Holger Pohlmann
  • Hendrik Feldmann
  • Hans-Jürgen Panitz
Article

Abstract

Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

Keywords

Drift correction Decadal prediction Dynamical downscaling 

Notes

Acknowledgements

We thank the Max-Planck Institute for Meteorology for providing the MPI-ESM decadal predictions and the EU-FP6 project ENSEMBLES and the ECA&D project for making the E-OBS 14.0 data set available. The NOAA-20C reanalysis was kindly provided by the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for Research in Environmental Sciences (CIRES). The HadISST data set has been made available by the Met Office Hadley Centre. This work was carried out in the framework of the German MiKlip project and supported by the German Minister of Education and Research (BMBF) under Grants no. 01LP1129A-F and 01LP1519A.

References

  1. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161CrossRefGoogle Scholar
  2. Boer GJ (2011) Decadal potential predictability of twenty-first century climate. Clim Dyn 36:1119–1133CrossRefGoogle Scholar
  3. Branstator G, Teng H (2012) Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophys Res Lett.  https://doi.org/10.1029/2012GL051974 Google Scholar
  4. Choudhury D, Sharma A, Sen Gupta A, Mehrotra R, Sivakumar B (2016) Sampling biases in CMIP5 decadal forecasts. J Geophys Res 121:3435–3445CrossRefGoogle Scholar
  5. Compo GP, Whitacker JS, Sardesmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ǿ, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011), The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  6. Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett.  https://doi.org/10.1029/2012GL053354 Google Scholar
  7. Danforth CM, Kalnay E (2008) Impact of online empirical model correction on nonlinear error growth. Geophys Res Lett.  https://doi.org/10.1029/2008GL036239 Google Scholar
  8. Diaconescu EP, Laprise R, Sushama L (2007) The impact of lateral boundary data errors on the simulated climate of a nested regional climate model. Clim Dyn 28:333–350CrossRefGoogle Scholar
  9. Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Gárcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodriguez LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715CrossRefGoogle Scholar
  10. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38:L14701.  https://doi.org/10.1029/2011GL047949 CrossRefGoogle Scholar
  11. Fuċkar NS, Volpi D, Guemas V, Doblas-Reyes FJ (2014) A posteriori adjustment of near-term climate predictions: accounting for the drift dependence on the initial conditions. Geophys Res Lett 41:5200–5207CrossRefGoogle Scholar
  12. Garcia-Serrano J, Doblas Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn 39:2025–2040CrossRefGoogle Scholar
  13. Garcia-Serrano J, Guemas V, Doblas Reyes FJ (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555CrossRefGoogle Scholar
  14. Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic ocean variability on seasonal to decadal time scales. Clim Dyn 40:2311–2330CrossRefGoogle Scholar
  15. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272CrossRefGoogle Scholar
  16. Guemas V, Doblas-Reyes FJ, Lienert F, Soufflet Y, Du H (2012) Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res 117:D20111.  https://doi.org/10.1029/2012JD018004 CrossRefGoogle Scholar
  17. Hawkins E, Dong B, Robson J, Sutton R (2014) The interpretation and use of biases in decadal climate predictions. J Clim 27:2931–2947CrossRefGoogle Scholar
  18. Hawkins E, Smith RS, Gregory JM, Stainforth DA (2016) Irreducible uncertainty in near-term projections. Clim Dyn 46:3807–3819CrossRefGoogle Scholar
  19. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119.  https://doi.org/10.1029/2008JD10201 CrossRefGoogle Scholar
  20. Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett 40:1794–1798CrossRefGoogle Scholar
  21. ICPO (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office, CLIVAR Publication Series, No. 150, p 6Google Scholar
  22. IPCC (2013) Climate change 2013, the physical science basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535Google Scholar
  23. Jia L, DelSole T (2012) Multi-year predictability of temperature and precipitation in multiple climate models. Geophys Res Lett 39:L17707.  https://doi.org/10.1029/2012GL052778 CrossRefGoogle Scholar
  24. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2015) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446CrossRefGoogle Scholar
  25. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  26. Kharin VV, Boer GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012) Statistical adjustment of decadal predictions in a changing climate. Geophys Res Lett 39:L19705.  https://doi.org/10.1029/2012GL052647 CrossRefGoogle Scholar
  27. Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal Hindcasts. Geophys Res Lett 39:L10701.  https://doi.org/10.1029/2012GL051644 Google Scholar
  28. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett.  https://doi.org/10.1029/2006GL026242 Google Scholar
  29. Knight JR et al (2014) Predictions of climate several years ahead using an improved decadal prediction system. J Clim 27:7550–7567CrossRefGoogle Scholar
  30. Kröger J, Pohlmann H, Sienz F, Marotzke J, Baehr J, Köhl A, Modali K, Polkova I, Stammer D, Vamborg F, Müller WA (2017) Full-field initialized decadal predictions with the MPI earth system model: an initial shock in the North Atlantic. Clim Dyn.  https://doi.org/10.1007/s00382-017-4030-1 Google Scholar
  31. Kruschke T, Rust HW, Kadow C, Müller WA, Pohlmann H, Leckebusch GC, Ulbrich U (2015) Probabilistic evaluation of decadal prediction skill regarding northern hemisphere winter storms. Meteorol Z.  https://doi.org/10.1127/metz/2015/0641 Google Scholar
  32. Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41:2393–2409CrossRefGoogle Scholar
  33. Marotzke J et al (2016) MiKlip—a national research project on decadal climate prediction. Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-15-00184.1 Google Scholar
  34. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012a) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523CrossRefGoogle Scholar
  35. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012b) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 335:76–79CrossRefGoogle Scholar
  36. Meehl GA, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970 s shift and early 2000s hiatus and predictions for 2016–2035. Geophys Res Lett 41:1711–1716CrossRefGoogle Scholar
  37. Meehl GA, Goddard L, Murphy J, Stouffer RS, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction—can it be skilful?. Bull Am Meteorol Soc 90:1467–1485CrossRefGoogle Scholar
  38. Mehta VM, Wang H, Mendoza K (2013) Decadal predictability of tropical ocean basin average and global average sea surface temperatures in CMIP5 experiments with the HadCM3, GFDL-CM2.1, NCAR-CCSM4, and MIROC5 global Earth system models. Geophys Res Lett 40:2807–2812CrossRefGoogle Scholar
  39. Mieruch S, Feldmann H, Schädler G, Lenz C-J, Kothe S, Kottmeier C (2014) The regional MiKlip decadal forecast ensemble for Europe: the added value of dynamical downscaling. Geosci Model Dev 7:2983–2999CrossRefGoogle Scholar
  40. Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch J-S, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39:L22707.  https://doi.org/10.1029/2012GL053326 Google Scholar
  41. Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41:2100–2107CrossRefGoogle Scholar
  42. Müller V, Pohlmann H, Matei D, Marotzke J, Müller WA, Baehr J (2016) Hindcast skill fort he Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems. Clim Dyn.  https://doi.org/10.1007/s00382-016-3482-z Google Scholar
  43. Murphy J, Kattsov V, Keenlyside N, Kimoto M, Meehl G, Mehta V, Pohlmann H, Scaife A, Smith D (2010) Towards prediction of decadal climate variability and change. Proc Environ Sci 1:287–304CrossRefGoogle Scholar
  44. Narapusetty B, Stan C, Kumar A (2014) Bias correction methods for decadal sea-surface temperature forecasts. Tellus A 66:23681CrossRefGoogle Scholar
  45. Paeth H (2011) Postprocessing of simulated precipitation for impact studies in West Africa—Part I: model output statistics for monthly data. Clim Dyn 36:1321–1336CrossRefGoogle Scholar
  46. Paeth H, Latif M, Hense A (2003) Global SST influence on 20th century NAO variability. Clim Dyn 21:63–75CrossRefGoogle Scholar
  47. Paeth H et al (2017) Decadal and multi-year predictability of the West African monsoon and the role of dynamical downscaling. Meteorol Z.  https://doi.org/10.1127/metz/2017/0811 Google Scholar
  48. Panitz H-J, Fosser G, Sasse R, Sedlmeier K, Mieruch S, Breil M, Feldmann H, Schädler G (2014) High resolution climate modelling with the CCLM regional model. In: High performance computing in science and engineering 13.  https://doi.org/10.1007/978-3-319-02165-2_35
  49. Pattantyús-Ábrahám M, Kadow C, Illing S, Müller W, Pohlmann H, Steinbrecht W (2016) Bias and drift of the mid-range decadal climate prediction system (MiKlip) validated by European radiosonde data. Meteorol Z.  https://doi.org/10.1127/metz/2016/0803 Google Scholar
  50. Paxian A et al (2016) Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. J Geophys Res.  https://doi.org/10.1002/2015JD024143 Google Scholar
  51. Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40:5798–5802CrossRefGoogle Scholar
  52. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D14,4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  53. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348CrossRefGoogle Scholar
  54. Sansom PG, Ferro CAT, Stephenson DB, Goddard L, Mason SJ (2016) Best practices for postprocessing ensemble climate forecast. Part I: selecting appropriate recalibration methods. J Clim 29:7247–7264CrossRefGoogle Scholar
  55. Sen Gupta A, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models. J Clim 26:8597–8615CrossRefGoogle Scholar
  56. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799CrossRefGoogle Scholar
  57. Smith D et al (2013a) Real-time multi-model decadal climate predictions. Clim Dyn 41:2875–2888CrossRefGoogle Scholar
  58. Smith DM, Eade R, Pohlmann H (2013b) A comparison of full-field and anomaly initialization for seasonal to decadal climate predictions. Clim Dyn 41:3325–3338CrossRefGoogle Scholar
  59. Stevens B et al (2013) Atmospheric component of the MPI-M Earth system model: ECHAM6. J Adv Model Earth Sys 5:146–172CrossRefGoogle Scholar
  60. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280CrossRefGoogle Scholar
  61. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geography and GeologyUniversity of WürzburgWürzburgGermany
  2. 2.Deutscher Wetterdienst, Seewetteramt HamburgHamburgGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations