Advertisement

Observed increase in extreme daily rainfall in the French Mediterranean

  • Aurélien Ribes
  • Soulivanh Thao
  • Robert Vautard
  • Brigitte Dubuisson
  • Samuel Somot
  • Jeanne Colin
  • Serge Planton
  • Jean-Michel Soubeyroux
Article

Abstract

We examine long-term trends in the historical record of extreme precipitation events occurring over the French Mediterranean area. Extreme events are considered in terms of their intensity, frequency, extent and precipitated volume. Changes in intensity are analysed via an original statistical approach where the annual maximum rainfall amounts observed at each measurement station are aggregated into a univariate time-series according to their dependence. The mean intensity increase is significant and estimated at + 22% (+ 7 to + 39% at the 90% confidence level) over the 1961–2015 period. Given the observed warming over the considered area, this increase is consistent with a rate of about one to three times that implied by the Clausius–Clapeyron relationship. Changes in frequency and other spatial features are investigated through a Generalised Linear Model. Changes in frequency for events exceeding high thresholds (about 200 mm in 1 day) are found to be significant, typically near a doubling of the frequency, but with large uncertainties in this change ratio. The area affected by severe events and the water volume precipitated during those events also exhibit significant trends, with an increase by a factor of about 4 for a 200 mm threshold, again with large uncertainties. All diagnoses consistently point toward an intensification of the most extreme events over the last decades. We argue that it is difficult to explain the diagnosed trends without invoking the human influence on climate.

Keywords

Precipitation Extreme events Climate change Detection and attribution Mediterranean 

Notes

Acknowledgements

This work is dedicated to the memory of Valrie Jacq, who greatly contributed to the monitoring and statistical analysis of extreme precipitation events such as those studied in this paper. She also initiated the creation of several observed datasets used in this study. The authors thank Météo France for providing observed datasets. The authors gratefully acknowledge assistance from the French Ministère de l’environnement, de l’énergie et de la mer under the Extremoscope grant, which supported investigations of possible changes in extreme events. Part of this work has been supported by the Fondation STAE (through project Chavanada). This work is also a contribution to the MISTRALS/HyMeX programme.

Supplementary material

382_2018_4179_MOESM1_ESM.pdf (343 kb)
Supplementary material 1 (PDF 344 KB)

References

  1. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R et al (2002) The paradoxical increase of mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):31-1–31-4CrossRefGoogle Scholar
  2. Beaulant AL, Joly B, Nuissier O, Somot S, Ducrocq V, Joly A, Sevault F, Deque M, Ricard D (2011) Statistico-dynamical downscaling for mediterranean heavy precipitation. Q J R Meteorol Soc 137(656):736–748CrossRefGoogle Scholar
  3. Beguería S, Angulo-Martínez M, Vicente-Serrano SM, López-Moreno JI, El-Kenawy A (2011) Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast spain from 1930 to 2006. Int J Climatol 31(14):2102–2114CrossRefGoogle Scholar
  4. Bernard E, Naveau P, Vrac M, Mestre O (2013) Clustering of maxima: spatial dependencies among heavy rainfall in france. J Clim 26(20):7929–7937CrossRefGoogle Scholar
  5. Bindoff N, Stott P, AchutaRao K, Allen M, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from Global to Regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  6. Blanchet J, Molinié G, Touati J (2016) Spatial analysis of trend in extreme daily rainfall in Southern France. Clim Dyn.  https://doi.org/10.1007/s00382-016-3122-7
  7. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009CrossRefGoogle Scholar
  8. Colin J (2011) étude des événements précipitants intenses en méditerranée : approche par la modélisation climatique régionale. PhD thesis, University of Toulouse—Paul SabatierGoogle Scholar
  9. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, pp 1029–1136Google Scholar
  10. Déqué M, Somot S (2008) Extreme precipitation and high resolution with aladin. Idjaras Q J Hung Meteorol Serv 112:179–190Google Scholar
  11. Ducrocq V, Aullo G, Santurette P (2003) Les précipitations intenses et les inondations des 12 et 13 novembre 1999 sur le sud de la france. La Météorologie 42:18–27CrossRefGoogle Scholar
  12. Ducrocq V, Braud I, Davolio S, Ferretti R, Flamant C, Jans A, Kalthoff N, Richard E, Taupier-Letage I, Ayral PA, Belamari S, Berne A, Borga M, Boudevillain B, Bock O, Boichard JL, Bouin MN, Bousquet O, Bouvier C, Chiggiato J, Cimini D, Corsmeier U, Coppola L, Cocquerez P, Defer E, Delano J, Di Girolamo P, Doerenbecher A, Drobinski P, Dufournet Y, Fourri N, Gourley JJ, Labatut L, Lambert D, Le Coz J, Marzano FS, Molini G, Montani A, Nord G, Nuret M, Ramage K, Rison B, Roussot O, Said F, Schwarzenboeck A, Testor P, Van-Baelen J, Vincendon B, Aran M, Tamayo J (2014) Hymex-sop1, the field campaign dedicated to heavy precipitation and flash flooding in the northwestern mediterranean. Bull Am Meteorol Soc 95:1083–1100CrossRefGoogle Scholar
  13. Fischer E, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Chang 3(12):1033–1038CrossRefGoogle Scholar
  14. Genest C, MacKay J (1986) The joy of copulas: bivariate distributions with uniform marginals. Am Stat 40(4):280–283Google Scholar
  15. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707CrossRefGoogle Scholar
  16. Giorgi F, Lionello P (2008) Climate change projections for the mediterranean region. Glob Planet Chang 63(2):90–104CrossRefGoogle Scholar
  17. Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nat Geosci 9(8):584CrossRefGoogle Scholar
  18. Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. Wiley Interdiscip Rev Clim Chang 2(4):570–591.  https://doi.org/10.1002/wcc.121 CrossRefGoogle Scholar
  19. IPCC (2013) Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G et al (2014) Euro-cordex: new high-resolution climate change projections for european impact research. Reg Environ Chang 14(2):563–578CrossRefGoogle Scholar
  21. Kaufman L, Rousseeuw W (1990) Finding groups in data: an introduction to cluster analysis. Wiley, HobokenCrossRefGoogle Scholar
  22. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang 4(7):570–576CrossRefGoogle Scholar
  23. Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2016) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-15-0004.1
  24. Kharin VV, Zwiers F, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the cmip5 ensemble. Clim Chang 119(2):345–357CrossRefGoogle Scholar
  25. Lenderink G, Van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514CrossRefGoogle Scholar
  26. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rossell J, Vinet F, Boissier L (2013) Towards a database on societal impact of mediterranean floods within the framework of the hymex project. Nat Hazards Earth Syst Sci 13(5):1337–1350CrossRefGoogle Scholar
  27. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the mediterranean region in the midst of decadal variability. Clim Dyn 44(5–6):1437–1456CrossRefGoogle Scholar
  28. Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertachnik G et al (2013) Homer: a homogenization software-methods and applications. Időjárás Q J Hung Meteorol Serv 117(1):47–67Google Scholar
  29. Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381CrossRefGoogle Scholar
  30. Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P et al. (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res Atmos 111(D22):D22106CrossRefGoogle Scholar
  31. Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B et al (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 571–657Google Scholar
  32. Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over southern france. i: numerical framework and synoptic ingredients. Q J R Meteorol Soc 134(630):111–130CrossRefGoogle Scholar
  33. Nuissier O, Joly B, Joly A, Ducrocq V, Arbogast P (2011) A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern france. Q J R Meteorol Soc 137(660):1812–1827CrossRefGoogle Scholar
  34. Pall P, Allen M, Stone D (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under Co2 warming. Clim Dyn 28(4):351–363CrossRefGoogle Scholar
  35. Ribes A, Azaïs JM, Planton S (2010) A method for climate change detection using smooth tepmoral patterns. Clim Dyn 35(2–3):391–406.  https://doi.org/10.1007/s00382-009-0670-0 CrossRefGoogle Scholar
  36. Ribes A, Corre L, Gibelin AL, Dubuisson B (2016) Issues in estimating observed change at the local scale-a case study: the recent warming over france. Int J Climatol 36(11):3794–3806.  https://doi.org/10.1002/joc.4593 CrossRefGoogle Scholar
  37. Soubeyroux JM, Neppel L, Veysseire JM, Tramblay Y, Carreau J, Gouget V (2015) Evolution des précipitations extrêmes en france en contexte de changement climatique. La Houille Blanche 1:27–33CrossRefGoogle Scholar
  38. Taylor K, Stouffer R, Meehl G (2012) An overview of cmip5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  39. Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterisation of extreme winter precipitation in mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10(5):1037CrossRefGoogle Scholar
  40. Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary frequency analysis of heavy rainfall events in Southern France. Hydrol Sci J 58(2):280–294CrossRefGoogle Scholar
  41. Vautard R, Yiou P, van Oldenborgh GJ, Lenderink G, Thao S, Ribes A, Planton S, Dubuisson B, Soubeyroux JM (2015) Extreme fall 2014 precipitation in the cévennes mountains. Bull Am Meteorol Soc 96(12):S56–S60CrossRefGoogle Scholar
  42. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918CrossRefGoogle Scholar
  43. Zhang X, Wan H, Zwiers FW, Hegerl GC, Min SK (2013) Attributing intensification of precipitation extremes to human influence. Geophys Res Lett 40(19):5252–5257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRM, Université de Toulouse, Météo France, CNRSToulouseFrance
  2. 2.LSCE, UMR 8212 CEA-CNRS-UVSQ, IPSL and Université Paris-SaclayGif-sur-Yvette CedexFrance
  3. 3.Météo France, Direction de la Climatologie et des Services ClimatiquesToulouseFrance

Personalised recommendations