Skip to main content

Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

Abstract

This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990–2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about − 30 W/m2 in austral summer and about − 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to − 76 W/m2 in summer and − 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the “brightening” period 1990–2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data. (5) For individual RCM models, their SSR bias fields seem rather insensitive with respect to the different lateral forcings provided by ERAINT and various GCMs, in line with previous findings over Europe. (6) Biases in SSR are overall qualitatively consistent with those in total cloud cover. The information obtained in present study is of crucial importance for understanding future climate projections of SSR and for relevant impact studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1231

    Article  Google Scholar 

  2. Alexandri G, Georgoulias A, Zanis P, Katragkou E, Tsikerdekis A, Kourtidis K, Meleti C (2015) On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations. Atmos Chem Phys 15:13195–13216

    Article  Google Scholar 

  3. Allen RJ, Norris JR, Wild M (2013) Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J Geophys Res Atmos 118:6311–6336. https://doi.org/10.1002/jgrd.50426

    Article  Google Scholar 

  4. Bartók B et al (2017) Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Clim Dynam 49:2665–2683. https://doi.org/10.1007/s00382-016-3471-2

    Article  Google Scholar 

  5. Buontempo C, Mathison C, Jones R, Williams K, Wang C, McSweeney C (2015) An ensemble climate projection for Africa. Clim Dyn 44:2097–2118

    Article  Google Scholar 

  6. Cherian R, Quaas J, Salzmann M, Wild M (2014) Pollution trends over Europe constrain global aerosol forcing as simulated by climate models. Geophys Res Lett 41:2176–2181

    Article  Google Scholar 

  7. Chiacchio M, Solmon F, Giorgi F, Stackhouse P, Wild M (2015) Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. J Geophys Res Atmos 120:1951–1971

    Article  Google Scholar 

  8. Christensen OBDM., Christensen JH (2006) The HIRHAM regional climate model version 5. DMI Tech Rep 06–17:22

    Google Scholar 

  9. Collins W et al (2011) Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev 4:1051

    Article  Google Scholar 

  10. David M, Andriamasomanana FHR, Liandrat O (2014) Spatial and temporal variability of PV output in an insular grid: case of reunion island. Energy Procedia 57:1275–1282

    Article  Google Scholar 

  11. Davy RJ, Troccoli A (2012) Interannual variability of solar energy generation in Australia. Sol Energy 86:3554–3560

    Article  Google Scholar 

  12. Dee D et al (2011) The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  13. Di Luca A, de Elía R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38:1229–1247

    Article  Google Scholar 

  14. Dosio A, Panitz H-J (2016) Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim Dyn 46:1599–1625

    Article  Google Scholar 

  15. Dufresne J-L et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  16. Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  17. Fant C, Schlosser CA, Strzepek K (2016) The impact of climate change on wind and solar resources in southern Africa. Appl Energy 161:556–564

    Article  Google Scholar 

  18. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181

    Article  Google Scholar 

  19. Finger D, Heinrich G, Gobiet A, Bauder A (2012) Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour Res. https://doi.org/10.1029/2011WR010733

    Google Scholar 

  20. Flato G et al (2013) Evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Clim Change 5:741–866

    Google Scholar 

  21. García-Díez M, Fernández J, Vautard R (2015) An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn 45:3141–3156

    Article  Google Scholar 

  22. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11:2042

    Article  Google Scholar 

  23. Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  24. Giorgi F, Marinucci MR, Visconti G (1990) Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res Atmos 95:18413–18431

    Article  Google Scholar 

  25. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework World Meteorological Organization (WMO). Bulletin 58:175

    Google Scholar 

  26. Gupta S, Stackhouse P Jr, Cox S, Mikovitz J, Zhang T (2006) Surface radiation budget project completes 22-year data set GEWEX. News 16:12–13

    Google Scholar 

  27. Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis K, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867

    Article  Google Scholar 

  28. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    Article  Google Scholar 

  29. Haywood JM, Bellouin N, Jones A, Boucher O, Wild M, Shine KP (2011) The roles of aerosol, water vapor and cloud in future global dimming/brightening. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016000

    Google Scholar 

  30. Hazeleger W et al (2012) EC-earth V2. 2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629

    Article  Google Scholar 

  31. Hewitson B, Lennard C, Nikulin G, Jones C (2012) CORDEX-Africa: a unique opportunity for science and capacity building CLIVAR. Exchanges 60:6–7

    Google Scholar 

  32. Hussain M, Rahman L, Rahman MM (1999) Technical note: techniques to obtain improved predictions of global radiation from sunshine duration. Renew Energy 18:263–275

    Article  Google Scholar 

  33. Jacob D et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3:181–199

    Article  Google Scholar 

  34. Jaeger EB, Anders I, Luethi D, Rockel B, Schaer C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17:349–367

    Article  Google Scholar 

  35. Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40:3023–3046

    Article  Google Scholar 

  36. Jerez S et al (2015) The impact of climate change on photovoltaic power generation in Europe. Nat Commun 6:10014. https://doi.org/10.1038/ncomms10014, https://www.nature.com/articles/ncomms10014#supplementary-information

    Article  Google Scholar 

  37. Journée M, Bertrand C (2010) Improving the spatio-temporal distribution of surface solar radiation data by merging ground and satellite measurements. Remote Sens Environ 114:2692–2704

    Article  Google Scholar 

  38. Karlsson K-G et al (2017) CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos Chem Phys 17:5809

    Article  Google Scholar 

  39. Kim J et al (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn 42:1189–1202

    Article  Google Scholar 

  40. Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res Atmos 115. https://doi.org/10.1029/2010JD014331

  41. Kothe S, Dobler A, Beck A, Ahrens B (2011) The radiation budget in a regional climate model. Clim Dyn 36:1023–1036

    Article  Google Scholar 

  42. Lara-Fanego V, Ruiz-Arias J, Pozo-Vázquez D, Santos-Alamillos F, Tovar-Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol Energy 86:2200–2217

    Article  Google Scholar 

  43. Li JL et al (2013a) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118:8166–8184

    Article  Google Scholar 

  44. Li P, Morel B, Bessafi M, Solmon F, Chiacchio M (2013b) The radiation budget in the regional climate model RegCM4: simulation results from two different radiative schemes over the south-western Indian Ocean. In: EGU General Assembly 2013, pp EGU2013–E2723

  45. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29:61. https://doi.org/10.1029/2002GL014910

    Article  Google Scholar 

  46. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  Google Scholar 

  47. Markovic M, Jones CG, Vaillancourt PA, Paquin D, Winger K, Paquin-Ricard D (2008) An evaluation of the surface radiation budget over North America for a suite of regional climate models against surface station observations. Clim Dyn 31:779–794

    Article  Google Scholar 

  48. Monforti F, Huld T, Bódis K, Vitali L, D’isidoro M, Lacal-Arántegui R (2014) Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew Energy 63:576–586

    Article  Google Scholar 

  49. Müller B, Wild M, Driesse A, Behrens K (2014) Rethinking solar resource assessments in the context of global dimming and brightening. Sol Energy 99:272–282

    Article  Google Scholar 

  50. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41:5605–5611

    Article  Google Scholar 

  51. Ohmura A, Gilgen HJ, Wild M (1989) Global Energy Balance Archive, GEBA. Geographisches Institut, Eidgenössische Technische Hochschule Zürich, Zürich

    Google Scholar 

  52. Ohmura A et al (1998) Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  53. Paeth H, Mannig B (2013) On the added value of regional climate modeling in climate change assessment. Clim Dyn 41:1057–1066

    Article  Google Scholar 

  54. Pan Z, Segal M, Arritt RW, Takle ES (2004) On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases. Renew Energy 29:1923–1928

    Article  Google Scholar 

  55. Panagea IS, Tsanis IK, Koutroulis AG, Grillakis MG (2014) Climate change impact on photovoltaic energy output: the case of Greece. Adv Meteorol

  56. Panitz H-J, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44 and 0.22 resolution. Clim Dyn 42:3015–3038

    Article  Google Scholar 

  57. Panitz H-J, Berg P, Schädler G, Fosser G, Modelling Near Future Regional Climate Change for Germany and Africa. In: Berlin, Heidelberg, 2012. High Performance Computing in Science and Engineering ‘11. Springer, Berlin, pp 503–512

  58. Pasicko R, Branković Č, Šimić Z (2012) Assessment of climate change impacts on energy generation from renewable sources in Croatia. Renew Energy 46:224–231

    Article  Google Scholar 

  59. Patricola CM, Cook KH (2011) Sub-Saharan Northern African climate at the end of the twenty-first century: forcing factors and climate change processes. Clim Dyn 37:1165–1188. doi:https://doi.org/10.1007/S00382-010-0907-Y

    Article  Google Scholar 

  60. Perez R, Hoff T (2013) Solar resource variability solar energy forecasting and resource assessment. Elsevier, Philadelphia, pp 133–148

    Book  Google Scholar 

  61. Pessacg NL et al (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn 43:1221–1239

    Article  Google Scholar 

  62. Pfeifroth U, Kothe S, Müller R, Trentmann J, Hollmann R, Fuchs P, Werscheck M (2017) Surface radiation data set—Heliosat (SARAH)—Edition 2. Satellite Application Facility on Climate Monitoring. https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002

  63. Pfeifroth U, Sanchez-Lorenzo A, Manara V, Trentmann J, Hollmann R (2018) Trends and Variability of Surface Solar Radiation in Europe Based On Surface- and Satellite-Based Data Records. J Geophys Res Atmos. https://doi.org/10.1002/2017JD027418

    Google Scholar 

  64. Posselt R, Mueller R, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198

    Article  Google Scholar 

  65. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348

    Article  Google Scholar 

  66. Romanou A, Liepert B, Schmidt GA, Rossow WB, Ruedy RA, Zhang Y (2007) 20th century changes in surface solar irradiance in simulations and observations. Geophys Res Lett 34. https://doi.org/10.1029/2006GL028356

  67. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287

    Article  Google Scholar 

  68. Rotstayn L, Jeffrey S, Collier M, Dravitzki S, Hirst A, Syktus J, Wong K (2012) Aerosol-and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377

    Article  Google Scholar 

  69. Ruckstuhl C, Norris JR (2009) How do aerosol histories affect solar “dimming” and “brightening” over Europe?: IPCC-AR4 models versus observations. J Geophys Res Atmos. https://doi.org/10.1029/2008JD011066 114:n/a-n/a

    Google Scholar 

  70. Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdiscip Rev Clim Change 7:145–159

    Article  Google Scholar 

  71. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  72. Samuelsson P et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  73. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  74. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107:255–278

    Article  Google Scholar 

  75. Stjern CW, Kristjansson JE, Hansen AW (2009) Global dimming and global brightening—an analysis of surface radiation and cloud cover data in northern Europe. Int J Climatol 29:643–653

    Article  Google Scholar 

  76. Tanré D, Geleyn J, Slingo J (1984) First results of the introduction of an advanced aerosolradiation interaction in ECMWF low resolution global model. In: Gerber HE, Deepak A (eds) Aerosols and their climatic effects. Deepak Publishing, Hampton, VA, pp 133–177

    Google Scholar 

  77. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498 https://doi.org/10.1175/Bams-D-11-00094.1

    Article  Google Scholar 

  78. Tjiputra J et al (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci Model Dev 6:301–325

    Article  Google Scholar 

  79. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. https://doi.org/10.1002/2014JD022781

    Article  Google Scholar 

  80. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  81. Van Meijgaard E, Van Ulft L, Van de Berg W, Bosveld F, Van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO version 2.1 Koninklijk Nederlands Meteorologisch Instituut

  82. Voldoire A et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Article  Google Scholar 

  83. von Salzen K et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125

    Article  Google Scholar 

  84. Walker A, Beuschel D, Roiter M (1996) International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD-No. 73 7 World Meteorological Organization

  85. Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  86. Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos. https://doi.org/10.1029/2008jd011470

    Google Scholar 

  87. Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93:27

    Article  Google Scholar 

  88. Wild M, Schmucki E (2011) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Clim Dyn 37:1671–1688

    Article  Google Scholar 

  89. Wild M, Ohmura A, Gilgen H, Roeckner E (1995) Validation of general circulation model radiative fluxes using surface observations. J Clim 8:1309–1324

    Article  Google Scholar 

  90. Wild M et al (2005) From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science 308:847–850. https://doi.org/10.1126/science.1103215

    Article  Google Scholar 

  91. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134

    Article  Google Scholar 

  92. Wild M et al (2015a) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429

    Article  Google Scholar 

  93. Wild M, Folini D, Henschel F, Fischer N, Müller B (2015b) Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sci Direct Sol Energy 116:13

    Google Scholar 

  94. Wild M et al (2017) The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth Syst Sci Data 9:601

    Article  Google Scholar 

  95. Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140:2373–2423

    Article  Google Scholar 

  96. Zhang X, Liang S, Wild M, Jiang B (2015) Analysis of surface incident shortwave radiation from four satellite products. Remote Sens Environ 165:186–202

    Article  Google Scholar 

  97. Zhang X, Liang S, Wang G, Yao Y, Jiang B, Cheng J (2016) Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens 8:225. https://doi.org/10.3390/rs8030225

    Article  Google Scholar 

  98. Zubler EM et al (2011a) Implementation and evaluation of aerosol and cloud microphysics in a regional climate model. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014572 116:n/a-n/a

    Google Scholar 

  99. Zubler EM, Folini D, Lohmann U, Lüthi D, Schär C, Wild M (2011b) Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015396

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Tang.

Appendix

Appendix

See Figs. 12 and 13 and Table 6.

Fig. 12
figure12

Latitudinal variation of the monthly SSR Mean Absolute Bias (MAB) from SARAH-2 (red), ERAINT (light green), SRB (green) and CFSR (blue) at the GEBA stations (Fig. 1) during 1990–2005. Each MAB is an averaged value from all the stations located in a 5° latitude interval. The number of stations is indicated by the gray bar in each interval

Fig. 13
figure13

Multi-model seasonal mean SSR (CLT) differences with respect to SARAH-2 (CLARA-A2) in DJF and JJA seasons over the period 1990–2005. In order to avoid overrepresentation of those RCMs having many simulations (4 in CCLM4 and 10 in RCA4, 3 in HIRHAM4 and 2 in RACM22T and REMO2009), each model bias is firstly determined as average over the simulations conducted by this model, and then only the 5 remaining bias fields were averaged to obtain the multimodel mean. However, the resulting multimodel mean SSR field shows only negligible differences compared an unweighted average over all 20 RCMs simulations, so the “overrepresentation” is not crucial in this study

Table 6 Aerosols adapted in the regional climate models

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Morel, B., Wild, M. et al. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models. Clim Dyn 52, 457–477 (2019). https://doi.org/10.1007/s00382-018-4143-1

Download citation

Keywords

  • Surface solar radiation
  • Regional climate model
  • Southern Africa
  • CORDEX-Africa
  • GEBA