Skip to main content

Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state

Abstract

The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961–2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

    Article  Google Scholar 

  2. Arora VK (2003) Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric For Meteorol 118(1–2):21–47. https://doi.org/10.1016/S0168-1923(03)00073-X

    Article  Google Scholar 

  3. Arora VK, Boer GJ (2003) A representation of variable root distribution in dynamic vegetation models. Earth Interact 7

  4. Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob Change Biol 11(1):39–59. https://doi.org/10.1111/j.1365-2486.2004.00890.x

    Article  Google Scholar 

  5. Arora VK, Boer GJ (2006) Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interact 10

  6. Asrar G, Fuchs M, Kanemasu E, Hatfield J (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76(2):300–306

    Article  Google Scholar 

  7. Betts RA, Golding N, Gonzalez P, Gornall J, Kahana R, Kay G, Mitchell L, Wiltshire A (2015) Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways. Biogeosciences 12(5):1317–1338. https://doi.org/10.5194/bg-12-1317-2015

    Article  Google Scholar 

  8. Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1997) Circum-Arctic map of permafrost and ground-ice conditions

  9. Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (calm) program: research designs and initial results. Polar Geogr 24(3):166–258. https://doi.org/10.1080/10889370009377698

    Article  Google Scholar 

  10. Brown R, Bartlett P, MacKay M, Verseghy D (2006) Evaluation of snow cover in CLASS for SnowMIP. Atmos Ocean 44(3):223–238. https://doi.org/10.3137/ao.440302

    Article  Google Scholar 

  11. Carroll M, Townshend J, Hansen M, DiMiceli C, Sohlberg R, Wurster K (2011) MODIS vegetative cover conversion and vegetation continuous fields. Land Remote Sens Global Environ Change. Springer, pp 725–745

  12. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149(1):78–90. https://doi.org/10.1007/BF00386231

    Article  Google Scholar 

  13. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang XM (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  14. Garnaud C, Sushama L (2015) Biosphere-climate interactions in a changing climate over North America. J Geophys Res Atmos 120(3):1091–1108. https://doi.org/10.1002/2014jd022055

    Article  Google Scholar 

  15. Garnaud C, Sushama L, Arora VK (2014a) The effect of driving climate data on the simulated terrestrial carbon pools and fluxes over North America. Int J Climatol 34(4):1098–1110. https://doi.org/10.1002/joc.3748

    Article  Google Scholar 

  16. Garnaud C, Sushama L, Verseghy D (2014b) Impact of interactive vegetation phenology on the Canadian RCM simulated climate over North America. Clim Dyn 45(5–6):1471–1492. https://doi.org/10.1007/s00382-014-2397-9

    Article  Google Scholar 

  17. Koven CD, Riley WJ, Stern A (2013) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. J Clim 26(6):1877–1900. https://doi.org/10.1175/Jcli-D-12-00228.1

    Article  Google Scholar 

  18. Letts MG, Roulet NT, Comer NT, Skarupa MR, Verseghy DL (2000) Parametrization of peatland hydraulic properties for the Canadian Land Surface Scheme. Atmos Ocean 38(1):141–160. https://doi.org/10.1080/07055900.2000.9649643

    Article  Google Scholar 

  19. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  20. Melton JR, Arora VK (2016) Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci Model Dev 9(1):323–361. https://doi.org/10.5194/gmd-9-323-2016

    Article  Google Scholar 

  21. Murray-Tortarolo G, Anav A, Friedlingstein P, Sitch S, Piao SL, Zhu ZC, Poulter B, Zaehle S, Ahlstrom A, Lomas M, Levis S, Viovy N, Zeng N (2013) evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sens 5(10):4819–4838. https://doi.org/10.3390/rs5104819

    Article  Google Scholar 

  22. Myneni RB, Ramakrishna R, Nemani R, Running SW (1997) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans Geosci Remote Sens 35(6):1380–1393. https://doi.org/10.1109/36.649788

    Article  Google Scholar 

  23. Nachtergaele F, van Velthuizen H, Verelst L, Batjes N, Dijkshoorn K, van Engelen V, Fischer G, Jones A, Montanarella L, Petri M (2008). Harmonized world soil database. Food and Agriculture Organization of the United Nations

  24. Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007). Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett. https://doi.org/10.1029/2007GL029525

    Article  Google Scholar 

  25. Osterkamp TE (2007). Characteristics of the recent warming of permafrost in Alaska. J Geophys Res Earth Surf. https://doi.org/10.1029/2006JF000578

    Article  Google Scholar 

  26. Paquin JP, Sushama L (2014) On the Arctic near-surface permafrost and climate sensitivities to soil and snow model formulations in climate models. Clim Dyn 44(1–2):203–228. https://doi.org/10.1007/s00382-014-2185-6

    Article  Google Scholar 

  27. Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3(7):673–677. https://doi.org/10.1038/Nclimate1858

    Article  Google Scholar 

  28. Pelletier JD, Broxton PD, Hazenberg P, Zeng X, Troch PA, Niu G, Williams ZC, Brunke MA, Gochis D (2016). Global 1-km gridded thickness of soil, regolith, and sedimentary deposit layers. https://doi.org/10.3334/ORNLDAAC/1304

  29. Peng Y, Arora VK, Kurz WA, Hember RA, Hawkins BJ, Fyfe JC, Werner AT (2014) Climate and atmospheric drivers of historical terrestrial carbon uptake in the province of British Columbia, Canada. Biogeosciences 11(3):635–649. https://doi.org/10.5194/bg-11-635-2014

    Article  Google Scholar 

  30. Quillet A, Peng CH, Garneau M (2010) Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ Rev 18:333–353. https://doi.org/10.1139/A10-016

    Article  Google Scholar 

  31. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. https://doi.org/10.1016/j.agrformet.2012.09.012

    Article  Google Scholar 

  32. Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, Chanton JP, Chapin FS, Christensen TR, Ciais P, Crosby BT, Czimczik CI, Grosse G, Harden J, Hayes DJ, Hugelius G, Jastrow JD, Jones JB, Kleinen T, Koven CD, Krinner G, Kuhry P, Lawrence DM, McGuire AD, Natali SM, O’Donnell JA, Ping CL, Riley WJ, Rinke A, Romanovsky VE, Sannel ABK, Schadel C, Schaefer K, Sky J, Subin ZM, Tarnocai C, Turetsky MR, Waldrop MP, Anthony KMW, Wickland KP, Wilson CJ, Zimov SA (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change 119(2):359–374. https://doi.org/10.1007/s10584-013-0730-7

    Article  Google Scholar 

  33. Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  34. Slater AG, Lawrence DM (2013) Diagnosing present and future permafrost from climate models. J Clim 26(15):5608–5623. https://doi.org/10.1175/Jcli-D-12-00341.1

    Article  Google Scholar 

  35. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner Gk, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

  36. Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc Natl Acad Sci USA 107(4):1295–1300. https://doi.org/10.1073/pnas.0913846107

    Article  Google Scholar 

  37. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles. https://doi.org/10.1029/2008gb003327

    Article  Google Scholar 

  38. Verseghy DL (1991) Class-a canadian land surface scheme for Gcms.1. Soil Model. Int J Climatol 11(2):111–133

    Article  Google Scholar 

  39. Verseghy DL (2011) CLASS—the Canadian land surface scheme (Version 3.5), Technical Documentation (Version 1). Climate Research Division, Science and Technology Branch, Environment Canada

  40. Verseghy DL, Mcfarlane NA, Lazare M (1993) Class—a Canadian land-surface scheme for Gcms.2. Vegetation model and coupled runs. Int J Climatol 13(4):347–370. doi:https://doi.org/10.1002/joc.3370130402

    Article  Google Scholar 

  41. Wramneby A, Smith B, Samuelsson P (2010) Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J Geophys Res Atmos 115:D21. https://doi.org/10.1029/2010jd014307

    Article  Google Scholar 

  42. Xu L, Myneni RB, Chapin FS, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tommervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change 3(6):581–586. https://doi.org/10.1038/Nclimate1836

    Article  Google Scholar 

  43. Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (2008) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography 31(1–2):47–68. https://doi.org/10.1080/10889370802175895

    Article  Google Scholar 

  44. Zhang WX, Miller PA, Smith B, Wania R, Koenigk T, Doscher R (2013) Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ Res Lett 8(3):034023. https://doi.org/10.1088/1748-9326/8/3/034023

    Article  Google Scholar 

  45. Zhang W, Jansson C, Miller PA, Smith B, Samuelsson P (2014) Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics. Biogeosciences 11(19):5503–5519. https://doi.org/10.5194/bg-11-5503-2014

    Article  Google Scholar 

  46. Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani RR, Myneni RB (2013) Global data sets of vegetation leaf area index (LAI) 3 g and Fraction of Photosynthetically Active Radiation (FPAR) 3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens 5(2):927–948

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the Canadian Network for Regional Climate and Weather Processes (CNRCWP) that is funded through NSERC’s (Natural Sciences and Engineering Research Council of Canada) CCAR (Climate Change and Atmospheric Research) Program. The simulations considered in this study were performed on the supercomputer managed by Calcul Québec and Compute Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernardo Teufel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teufel, B., Sushama, L., Arora, V.K. et al. Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state. Clim Dyn 52, 373–388 (2019). https://doi.org/10.1007/s00382-018-4142-2

Download citation

Keywords

  • Dynamic vegetation model
  • Albedo
  • Permafrost
  • Active layer thickness
  • Climate change