Advertisement

A theoretical model of strong and moderate El Niño regimes

  • Ken Takahashi
  • Christina Karamperidou
  • Boris Dewitte
Article

Abstract

The existence of two regimes for El Niño (EN) events, moderate and strong, has been previously shown in the GFDL CM2.1 climate model and also suggested in observations. The two regimes have been proposed to originate from the nonlinearity in the Bjerknes feedback, associated with a threshold in sea surface temperature (\(T_c\)) that needs to be exceeded for deep atmospheric convection to occur in the eastern Pacific. However, although the recent 2015–16 EN event provides a new data point consistent with the sparse strong EN regime, it is not enough to statistically reject the null hypothesis of a unimodal distribution based on observations alone. Nevertheless, we consider the possibility suggestive enough to explore it with a simple theoretical model based on the nonlinear Bjerknes feedback. In this study, we implemented this nonlinear mechanism in the recharge-discharge (RD) ENSO model and show that it is sufficient to produce the two EN regimes, i.e. a bimodal distribution in peak surface temperature (T) during EN events. The only modification introduced to the original RD model is that the net damping is suppressed when T exceeds \(T_c\), resulting in a weak nonlinearity in the system. Due to the damping, the model is globally stable and it requires stochastic forcing to maintain the variability. The sustained low-frequency component of the stochastic forcing plays a key role for the onset of strong EN events (i.e. for \(T>T_c\)), at least as important as the precursor positive heat content anomaly (h). High-frequency forcing helps some EN events to exceed \(T_c\), increasing the number of strong events, but the rectification effect is small and the overall number of EN events is little affected by this forcing. Using the Fokker–Planck equation, we show how the bimodal probability distribution of EN events arises from the nonlinear Bjerknes feedback and also propose that the increase in the net feedback with increasing T is a necessary condition for bimodality in the RD model. We also show that the damping strength determines both the adjustment time-scale and equilibrium value of the ensemble spread associated with the stochastic forcing.

Keywords

El Niño ENSO Nonlinearity Bjerknes feedback Recharge-discharge model Fokker–Planck equation Eastern Pacific 

Notes

Acknowledgements

The authors thank Drs. S.-I. An, F.-F. Jin, J.-S. Kug, A. Levine, K. Stein, A. Timmermann for useful discussions. KT was supported by the Manglares-IGP project (IDRC 106714) and PPR 068 “Reducción de Vulnerabilidad y Atención de Emergencias por Desastres”. CK was supported by U.S. NSF Grants OCE-1304910 and AGS-1602097. BD was supported by LEFE-GMMC (project STEPPE) and FONDECYT (projects 1171861 and 1151185). Calculations and plots were done with GNU Octave, GNU Fortran, GrADS, and R. The implementation in R of the dip test is by M. Mächler (https://CRAN.R-project.org/package=diptest) and the code for the Silverman test is from the website of G. Mukherjee (http://www-bcf.usc.edu/~gourab/code-bmt/tables/table-2).

Supplementary material

382_2018_4100_MOESM1_ESM.pdf (534 kb)
Supplementary material 1 (PDF 535 KB)

References

  1. An SI (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Clim.  https://doi.org/10.1175/2008JCLI1701.1
  2. An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412CrossRefGoogle Scholar
  3. An SI, Kim JW (2017) Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Nino and La Nina. Geophys Res Lett 44:393–400.  https://doi.org/10.1002/2016GL071971
  4. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112 (C11).  https://doi.org/10.1029/2006JC003798 Google Scholar
  5. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46(12):1687–1712CrossRefGoogle Scholar
  6. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn.  https://doi.org/10.1007/s00382-013-1783-z
  7. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, pp 11–15Google Scholar
  8. Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486CrossRefGoogle Scholar
  9. Burgers G, Jin FF, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett.  https://doi.org/10.1029/2005GL02295
  10. Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF, Timmermann A, Collins M, Vecchi G, Lengaigne M, England M, Dommenget D, Takahashi K, Guilyardi E (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Change.  https://doi.org/10.1038/nclimate2492
  11. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole P, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteor Soc.  https://doi.org/10.1175/BAMS-D-13-00117.1
  12. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippet MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608Google Scholar
  13. Chen C, Cane MA, Henderson N, Lee D, Chapman D, Kondrashov D, Chekroun MD (2016) Diversity, nonlinearity, seasonality, and memory effect in ENSO simulation and prediction using empirical model reduction. J Clim.  https://doi.org/10.1175/JCLI-D-15-0372.1
  14. Choi K, Vecchi GA, Wittenberg A (2013) ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J Clim.  https://doi.org/10.1175/JCLI-D-13-00045.1
  15. Choi K, Vecchi GA, Wittenberg A (2015) Nonlinear zonal wind response to ENSO in the CMIP5 models: roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J Clim.  https://doi.org/10.1175/JCLI-D-13-00045.1
  16. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space–time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett.  https://doi.org/10.1029/2002GL016673
  17. Dewitte B, Perigaud C (1996) El Niño-La Niña events simulated with Cane and Zebiak’s model and observed with satellite or in situ data. Part II: Model forced with observations. J Clim 9:1188–1207CrossRefGoogle Scholar
  18. Dewitte B, Yeh S, Thual S (2013) Reinterpreting the thermocline feedback in the western-central equatorial Pacific and its relationship with the ENSO modulations. Clim Dyn.  https://doi.org/10.1007/s00382-012-1504-z
  19. Dewitte B, Takahashi K (2017) Diversity of moderate El Niño events evolution: role of air–sea interactions in the eastern tropical Pacific. Clim Dyn.  https://doi.org/10.1007/s00382-017-4051-9
  20. DiNezio PN, Deser C (2014) Nonlinear controls on the persistence of La Niña. J Clim.  https://doi.org/10.1175/JCLI-D-14-00033.1
  21. Dommenget D, Bayr T, Frauen C (2012) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn.  https://doi.org/10.1007/s00382-012-1475-0
  22. Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18:5224–5238.  https://doi.org/10.1175/JCLI3588.1
  23. Frankignoul C, Hasselmann K (1977) Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305CrossRefGoogle Scholar
  24. Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett.  https://doi.org/10.1029/2010GL044444
  25. Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci.  https://doi.org/10.1175/JAS4029.1
  26. Gebbie G, Tziperman E (2009) Predictability of SST-modulated westerly wind bursts. J Clim.  https://doi.org/10.1175/2009JCLI2516.1
  27. Gerstner W, Kistler W (2002) Spiking neuron models. Single Neurons, Populations, Plasticity, Cambridge, p 480Google Scholar
  28. Giese B, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 18712008. J Geophys Res.  https://doi.org/10.1029/2010JC006695
  29. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238(4827):657–659CrossRefGoogle Scholar
  30. Hall P, York M (2001) On the calibration of Silverman’s test for multimodality. Stat Sin 11(2):515536Google Scholar
  31. Harrison DE (1984) The appearance of sustained equatorial surface westerlies during the 1982 Pacific warm event. Science 224:1099–1102CrossRefGoogle Scholar
  32. Hartigan PM (1985) Algorithm AS 217: computation of the dip statistic to test for unimodality. Appl Stat 35(3):320–325CrossRefGoogle Scholar
  33. Hasselmann K (1976) Stochastic climate models. Part I. Theory. Tellus 28:473–485CrossRefGoogle Scholar
  34. Hong LC, Ho L, Jin FF (2014) A Southern Hemisphere booster of super El Niño. Geophys Res Lett.  https://doi.org/10.1002/2014GL059370
  35. Izumo T, Vialard J, Lengaigne M, Montegut CdB, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci.  https://doi.org/10.1038/ngeo760
  36. Jekabsons, G (2013) ARESLab: adaptive regression splines toolbox for Matlab/Octave v. 1.5.1, Reference ManualGoogle Scholar
  37. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  38. Jin FF, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett.  https://doi.org/10.1029/2006GL027221
  39. Karamperidou C, Cane MA, Lall U, Wittenberg A (2013) Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens. Clim Dyn.  https://doi.org/10.1007/s00382-013-1759-z
  40. Karamperidou C, Jin F-F, Conroy J (2016) The importance of ENSO nonlinearities in tropical Pacific response to external forcing. Clim Dyn.  https://doi.org/10.1007/s00382-016-3475-y
  41. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett.  https://doi.org/10.1029/2002GL015924
  42. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim.  https://doi.org/10.1175/2008JCLI2624.1
  43. Larson S, Kirtman B (2013) The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett.  https://doi.org/10.1002/grl.50571
  44. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705CrossRefGoogle Scholar
  45. Levine AFZ, Jin FF (2010) Noise-induced instability in the ENSO recharge oscillator. J Clim.  https://doi.org/10.1175/2009JAS3213.1
  46. Lee J-Y, Woo J-S, Rhee S-W (1998) A transformed quantile-quantile plot for normal and bimodal distributions. J Inf Optim Sci 19(3):305–318Google Scholar
  47. Levine AFZ, Jin FF (2017) A simple approach to quantifying the noise ENSO interaction. Part I: deducing the state-dependency of the windstress forcing using monthly mean data. Clim Dyn.  https://doi.org/10.1007/s00382-015-2748-1
  48. Levine AFZ, Jin FF, McPhaden MJ (2016) Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño-La Niña asymmetry. J Clim.  https://doi.org/10.1175/JCLI-D-16-0091.1
  49. L’Heureux M, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Di Liberto TE, Gamble F, Gottschalck J, Halpert MS, Huang B, Mosquera-Vásquez K, Wittenberg AT (2016) Observing and predicting the 2015–16 El Niño. Bull Am Meteor Soc.  https://doi.org/10.1175/BAMS-D-16-0009.1
  50. Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III. The shortwave flux feedback. J Clim.  https://doi.org/10.1175/JCLI-D-11-00178.1
  51. Lloyd J, Guilyardi E, Weller H (2012) Local regression and likelihood. Statistics and computing series, vol 290. Springer, Berlin, p 1Google Scholar
  52. Loader C (1997) Locfit: an introduction. Stat Comput Graph Newsl 8:11–17Google Scholar
  53. McGregor S, Ramesh N, Spence P, England MH, McPhaden MJ, Santoso A (2012) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett.  https://doi.org/10.1002/grl.50136
  54. McGregor S, Timmermann A, Jin FF, Kessler WS (2015) Charging El Niño with off-equatorial westerly wind events. Clim Dyn.  https://doi.org/10.1007/s00382-015-2891-8
  55. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, JulianP Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean global atmosphere observing system: a decade of progress. J Geophys Res Oceans 103(C7):14169–14240CrossRefGoogle Scholar
  56. Monahan A, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Clim 17(15):3026–3036CrossRefGoogle Scholar
  57. Neelin JD, Dijkstra HA (1995) Ocean–atmosphere interaction and the tropical climatology. Part I: The dangers of flux correction. J Clim 8:1325–1342CrossRefGoogle Scholar
  58. Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett.  https://doi.org/10.1029/2011GL047658
  59. Palmer TN (1993) Extended-range atmospheric prediction and the Lorenz model. Bull Am Meteor Soc 74(1):49–65CrossRefGoogle Scholar
  60. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407.  https://doi.org/10.1029/2002JD002670
  61. Risken H (1996) The Fokker–Planck equation. Methods of Solution and applications, 3rd edn. Springer, BerlinGoogle Scholar
  62. Roulston MS, Neelin JD (2000) The response of an ENSO model to climate noise, weather noise and intraseasonal forcing. Geophys Res Lett 27(22):3723–3726CrossRefGoogle Scholar
  63. Silverman BW (1981) Using kernel density estimates to investigate multimodality. J R Stat Soc B 43(1):9799Google Scholar
  64. Su J, Zhang R, Li T, Rong X, Kug JS, Hong C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim.  https://doi.org/10.1175/2009JCLI2894.1
  65. Suarez M, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287CrossRefGoogle Scholar
  66. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (18802006). J Clim 21:22832296.  https://doi.org/10.1175/2007JCLI2100.1
  67. Stein K, Timmermann A, Schneider N, Jin F, Stuecker M (2014) ENSO seasonal synchronization theory. J Clim.  https://doi.org/10.1175/JCLI-D-13-00525.1
  68. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys Res Lett.  https://doi.org/10.1029/2011GL047364
  69. Takahashi K, Dewitte B (2016) Strong and moderate nonlinear El Niño regimes. Clim Dyn.  https://doi.org/10.1007/s00382-015-2665-3
  70. Takahashi K, Martínez AG (2016) The very strong El Niño in 1925 in the far-eastern Pacific. Submitted to Clim DynGoogle Scholar
  71. Timmermann A, Jin FF, Abshagen J (2003) A nonlinear theory for El Niño bursting. J Clim 60:152–165Google Scholar
  72. Vecchi GA, Harrison DE (2006) The termination of the 1997–98 El Niño. Part I: Mechanisms of oceanic change. J Clim 60:152–165Google Scholar
  73. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926CrossRefGoogle Scholar
  74. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: Implications for ENSO*. J Clim 16(16):2668–2675CrossRefGoogle Scholar
  75. Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis for the analysis of data. Biometrika 55(1):1–17Google Scholar
  76. Wittenberg A (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett.  https://doi.org/10.1029/2009GL038710
  77. Zavala-Garay J, Zhang C, Moore AM, Wittenberg AT, Harrison MJ, Rosati A, Vialard J, Kleeman R (2008) Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J Clim 21(15):3704–3721CrossRefGoogle Scholar
  78. Zhang L, Flügel M, Chang P (2003) Testing the stochastic mechanism for low-frequency variations in ENSO predictability. Geophys Res Lett 30:1630Google Scholar
  79. Zhang H, Clement A, Di Nezio P (2014) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim.  https://doi.org/10.1175/JCLI-D-13-00082.1

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Geofísico del PerúLimaPeru
  2. 2.Department of Atmospheric SciencesUniversity of Hawai’i at MānoaHonoluluUSA
  3. 3.Centro de Estudios Avanzado en Zonas Áridas (CEAZA)CoquimboChile
  4. 4.Departamento de Biología, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  5. 5.Laboratoire d’Etudes en Géophysique et Océanographie SpatialesToulouseFrance

Personalised recommendations