Skip to main content

Advertisement

Log in

Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979–2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agosta C, Fettweis X, Datta R (2015) Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere 9:2311–2321. doi:10.5194/tc-9-2311-2015

    Article  Google Scholar 

  • Armour KC, Bitz CM (2015) Observed and projected trends in Antarctic Sea Ice. US CLIVAR Var 13:12–19

    Google Scholar 

  • Armour KC, Marshall J, Scott JR et al (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9:549–554. doi:10.1038/ngeo2731

    Article  Google Scholar 

  • Bintanja R, van Oldenborgh GJ, Drijfhout SS et al (2013) Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci 6:376–379. doi:10.1038/ngeo1767

    Article  Google Scholar 

  • Bracegirdle TJ, Stephenson DB, Turner J, Phillips T (2015) The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation. Geophys Res Lett 42:10832–10839. doi:10.1002/2015GL067055

    Article  Google Scholar 

  • Cionni I, Eyring V, Lamarque JF et al (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11267–11292. doi:10.5194/acp-11-11267-2011

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A et al (2011) The ERA - Interim reanalysis: configuration and performance of the data assimilation system. Quaterly J R Meteorological Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Eisenman I, Meier WN, Norris JR (2014) A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated? Cryosphere 8:1289–1296. doi:10.5194/tc-8-1289-2014

    Article  Google Scholar 

  • England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227. doi:10.1038/nclimate2106

    Article  Google Scholar 

  • Fan T, Deser C, Schneider DP (2014) Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys Res Lett 41:2419–2426. doi:10.1002/2014GL059239

    Article  Google Scholar 

  • Ferreira D, Marshall J, Bitz CM et al (2015) Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28:1206–1226. doi:10.1175/JCLI-D-14-00313.1

    Article  Google Scholar 

  • Gettelman A, Kay JE, Fasullo JT et al (2013) Spatial decomposition of climate feedbacks in the community earth system model. J Clim 26:3544–3561. doi:10.1175/JCLI-D-12-00497.1

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Ocean 118:6704–6716. doi:10.1002/2013JC009067

    Article  Google Scholar 

  • Haumann FA, Gruber N, Münnich M et al (2016) Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537:89–92. doi:10.1038/nature19101

    Article  Google Scholar 

  • Hobbs WR, Bindoff NL, Raphael MN et al (2015) New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques*. J Clim 28:1543–1560. doi: 10.1175/JCLI-D-14-00367.1

    Article  Google Scholar 

  • Hobbs WR, Massom R, Stammerjohn S et al (2016) A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Change 143:228–250. doi:10.1016/j.gloplacha.2016.06.008

    Article  Google Scholar 

  • Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nat Geosci 5:872–875. doi:10.1038/ngeo1627

    Article  Google Scholar 

  • Holland MM, Bailey DA, Briegleb BP et al (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice*. J Clim 25:1413–1430. doi:10.1175/JCLI-D-11-00078.1

    Article  Google Scholar 

  • Huang CJ, Qiao F, Dai D (2014) Evaluating CMIP5 simulations of mixed layer depth during summer. J Geophys Res Ocean 119:2568–2582. doi:10.1002/2013JC009535

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2008) CICE: the Los Alamos sea ice model, documentation and software, version 4.0. Los Alamos National Laboratory Technical Report LA-CC-06-012, p 76

  • Hurrell JW, Holland MM, Gent PR et al (2013) The Community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • Jones JM, Gille ST, Goosse H et al (2016) Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat Clim Change 6:917–926. doi:10.1038/nclimate3103

    Article  Google Scholar 

  • Kay JE, Deser C, Phillips A et al (2014) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00255.1

    Google Scholar 

  • Kimura N (2004) Sea ice motion in response to surface wind and ocean current in the Southern Ocean. J Meteorol Soc Japan 82:1223–1231. doi:10.2151/jmsj.2004.1223

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. doi: 10.1038/nature12534

    Article  Google Scholar 

  • Kostov Y, Marshall J, Hausmann U et al (2016) Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim Dyn 1–15. doi:10.1007/s00382-016-3162-z

  • Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett. doi:10.1029/2003GL018732

    Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1990) Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr. doi:10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2

    Google Scholar 

  • Marsh DR, Mills MJ, Kinnison DE et al (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26:7372–7391. doi:10.1175/JCLI-D-12-00558.1

    Article  Google Scholar 

  • Marshall J, Armour KC, Scott JR et al (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans A Math Phys Eng Sci 372:20130040. doi:10.1098/rsta.2013.0040

    Article  Google Scholar 

  • Matear RJ, O’Kane TJ, Risbey JS et al (2015) Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat Commun 6:8656. doi:10.1038/ncomms9656

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Bitz CM et al (2016) Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat Geosci 9:590–595. doi:10.1038/ngeo2751

    Article  Google Scholar 

  • Meier WF, Fetterer F, Savoie M, Mallory S, Duerr R, Stroeve J (2013) NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 2. NSIDC: National Snow and Ice Data Center, Boulder. doi:10.7265/N55M63M1 (Updated 2016)

    Google Scholar 

  • Parkinson CL, DiGirolamo NE (2016) New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s. Remote Sens Environ 183:198–204. doi:10.1016/j.rse.2016.05.020

    Article  Google Scholar 

  • Peng G, Meier WN, Scott DJ, Savoie MH (2013) A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst Sci Data 5:311–318. doi:10.5194/essd-5-311-2013

    Article  Google Scholar 

  • Polvani LM, Smith KL (2013) Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys Res Lett 40:3195–3199. doi:10.1002/grl.50578

    Article  Google Scholar 

  • Purich A, England MH, Cai W et al (2016) Tropical pacific SST drivers of recent Antarctic sea ice trends. J Clim 29:8931–8948. doi:10.1175/JCLI-D-16-0440.1

    Article  Google Scholar 

  • Raphael MN, Marshall GJ, Turner J et al (2016) The Amundsen sea low: variability, change, and impact on antarctic climate. Bull Am Meteorol Soc 97:111–121. doi:10.1175/BAMS-D-14-00018.1

    Article  Google Scholar 

  • Sallée J-B, Shuckburgh E, Bruneau N et al (2013) Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. J Geophys Res Ocean 118:1845–1862. doi:10.1002/jgrc.20157

    Article  Google Scholar 

  • Santer BD, Wigley TML, Boyle JS et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337. doi:10.1029/1999JD901105

    Article  Google Scholar 

  • Schneider DP, Reusch DB (2016) Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget*. J Clim 29:1689–1716. doi: 10.1175/JCLI-D-15-0429.1

    Article  Google Scholar 

  • Schneider DP, Deser C, Fan T et al (2015) Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds*. J Clim 28:9350–9372. doi:10.1175/JCLI-D-15-0090.1

    Article  Google Scholar 

  • Sigmond M, Fyfe JC (2014) The antarctic sea ice response to the ozone hole in climate models. J Clim 27(3):1336–1342. doi:10.1175/JCLI-D-13-00590.1

    Article  Google Scholar 

  • Simpkins GR, Ciasto LM, England MH (2013) Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys Res Lett 40:3643–3648. doi:10.1002/grl.50715

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC et al (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Swart NC, Fyfe JC (2013) The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys Res Lett 40:4328–4332. doi:10.1002/grl.50820

    Article  Google Scholar 

  • Tan I, Storelvmo T, Zelinka MD (2016) Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352:224–227. doi:10.1126/science.aad5300

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J Clim 23:440–454. doi:10.1175/2009JCLI3152.1

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change 4:911–916. doi:10.1038/nclimate2341

    Article  Google Scholar 

  • Turner J, Bracegirdle TJ, Phillips T et al (2013) An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Clim 26:1473–1484. doi:10.1175/JCLI-D-12-00068.1

    Article  Google Scholar 

  • Turner J, Hosking JS, Marshall GJ et al (2016) Antarctic sea ice increase consistent with intrinsic variability of the Amundsen sea low. Clim Dyn 46:2391–2402. doi:10.1007/s00382-015-2708-9

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA et al (2010) Global Warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986. doi:10.1175/2009jcli3329.1

    Article  Google Scholar 

  • Yeo S-R, Kim K-Y (2015) Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Clim Dyn 45:3227–3242. doi:10.1007/s00382-015-2535-z

    Article  Google Scholar 

  • Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosph 7:451–468. doi:10.5194/tc-7-451-2013

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CESM Climate Variability and Change Working Group (CVCWG, http://www.cesm.ucar.edu/working_groups/CVC/) and Dr. Tingting Fan for conducting and post-processing the CESM1 Tropical Pacific Pacemaker simulations. The CESM Large Ensemble Community Project provided the LENS data. Both experiments benefited from computing resources on Yellowstone managed by NCAR-CISL and sponsored by the National Science Foundation. Drs. David Bailey, Marika Holland and Laura Landrum provided valuable discussions during the course of this work. D. Schneider was supported through NCAR and by National Science Foundation Grant 1235231. The figures were produced with the NCAR Command Language Software Package. NCAR is sponsored by the National Science Foundation. The authors also thank the individual climate modeling groups that have produced and made available the CMIP5 model output, as well as the coordination of those experiments by the World Climate Research Program’s Working Group on Coupled Modeling, and the software infrastructure for distributing model data supported by the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison. Finally, the authors thank two anonymous reviewers and the editor for constructive comments that led to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Schneider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 341 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, D.P., Deser, C. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends. Clim Dyn 50, 4599–4618 (2018). https://doi.org/10.1007/s00382-017-3893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3893-5

Keywords

Navigation