Skip to main content

Advertisement

Log in

Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971–2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadalipour A, Moradkhani H, Rana A (2017a) Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Clim Dyn 1–17. doi:10.1007/s00382-017-3639-4

  • Ahmadalipour A, Moradkhani H, Yan H, Zarekarizi M (2017b) Remote sensing of drought: Vegetation, soil moisture and data assimilation. In: Remote sensing of hydrological extremes

  • Ahmadalipour A, Rana A, Moradkhani H, Sharma A (2015) Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor Appl Climatol 1–17. doi:10.1007/s00704-015-1695-4

  • Bürger G, Murdock TQ, Werner AT et al (2012) Downscaling extremes—an intercomparison of multiple statistical methods for present climate. J Clim 25:4366–4388. doi:10.1175/JCLI-D-11-00408.1

    Article  Google Scholar 

  • Cayan DR, Redmond KT, Riddle LG (1999) ENSO and hydrologic extremes in the Western United States. J Clim 12:2881–2893. doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2

    Article  Google Scholar 

  • Costa AC, Soares A (2009) Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. Int J Climatol 29:1956–1975. doi:10.1002/joc.1834

    Article  Google Scholar 

  • Deni SM, Jemain AA, Ibrahim K (2008) The spatial distribution of wet and dry spells over peninsular Malaysia. Theor Appl Climatol 94:163–173. doi:10.1007/s00704-007-0355-8

    Article  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69:245–268. doi:10.1007/s10584-005-1157-6

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M et al. (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res. doi:10.1002/jgrd.50150

    Google Scholar 

  • Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Chang 3:1033–1038. doi:10.1038/nclimate2051

    Article  Google Scholar 

  • Frich P, Alexander L, Della-Marta P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Gershunov A, Barnett TP (1998) ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: observations and model results. J Clim 11:1575–1586. doi:10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi:10.1175/2008JCLI2429.1

    Article  Google Scholar 

  • Halmstad A, Najafi MR, Moradkhani H (2013) Analysis of precipitation extremes with the assessment of regional climate models over the Willamette River Basin, USA. Hydrol Process 27:2579–2590. doi:10.1002/hyp.9376

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512. doi:10.1175/JCLI3695.1

    Article  Google Scholar 

  • Hu Q (1997) On the uniqueness of the singular value decomposition in meteorological applications. J Clim 10:1762–1766. doi:10.1175/1520-0442(1997)010<1762:OTUOTS>2.0.CO;2

    Article  Google Scholar 

  • Huang S, Huang Q, Chang J, Leng G (2015) Linkages between hydrological drought, climate indices and human activities: a case study in the Columbia River basin. Int J Climatol 36:280–290. doi:10.1002/joc.4344

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Pachauri RK, Reisinger A (eds) Core writing team. IPCC, Geneva

    Google Scholar 

  • Irannezhad M, Chen D, Kløve B, Moradkhani H (2017) Analysing the variability and trends of precipitation extremes in Finland and their connection to atmospheric circulation patterns. Int J Climatol 37:1053–1066. doi:10.1002/joc.5059

  • Jones C (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian Oscillation. J Clim 13:3576–3587. doi:10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2

    Article  Google Scholar 

  • Leander R, Buishand TA, Klein Tank AMG (2014) An alternative index for the contribution of precipitation on very wet days to the total precipitation. J Clim. 27: 1367–1378. doi:10.1175/JCLI-D-13-00144.1

    Article  Google Scholar 

  • Livneh B, Rosenberg EA, Lin C, Nijssen B et al (2013) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J Clim 23:9384

    Article  Google Scholar 

  • Lyon B, Barnston AG (2005) ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J Clim 18:5095–5109. doi:10.1175/JCLI3598.1

    Article  Google Scholar 

  • Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82:619–638. doi:10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York

  • Meier HEM (2006) Baltic sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68. doi:10.1007/s00382-006-0124-x

    Article  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi:10.1038/nature09763

    Article  Google Scholar 

  • Moradkhani H, Meier M (2010) Long-lead water supply forecast using large-scale climate predictors and independent component analysis. J Hydrol Eng 15:744–762. doi:10.1061/(ASCE)HE.1943-5584.0000246

    Article  Google Scholar 

  • Najafi MR, Moradkhani H (2013) Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resour Res 49:6656–6670. doi: 10.1002/wrcr.20381

    Article  Google Scholar 

  • Ning L, Riddle EE, Bradley RS (2015) Projected changes in climate extremes over the Northeastern United States. J Clim 28:3289–3310. doi:10.1175/JCLI-D-14-00150.1

    Article  Google Scholar 

  • Rana A, Moradkhani H (2015) Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim Dyn 47:579–600. doi:10.1007/s00382-015-2857-x

    Article  Google Scholar 

  • Rana A, Uvo CB, Bengtsson L, Parth Sarthi P (2012) Trend analysis for rainfall in Delhi and Mumbai, India. Clim Dyn 38:45–56. doi:10.1007/s00382-011-1083-4

    Article  Google Scholar 

  • Rana A, Moradkhani H, Qin Y (2016) Understanding the joint behavior of temperature and precipitation for climate change impact studies. Theor Appl Climatol 1–19. doi:10.1007/s00704-016-1774-1

  • Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180. doi:10.1016/j.gloplacha.2004.06.010

    Article  Google Scholar 

  • Schmidli J, Goodess CM, Frei C, Haylock MR, Hundecha Y, Ribalaygua J, Schmith T (2007) Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J Geophys Res 112:D04105. doi:10.1029/2005JD007026

    Article  Google Scholar 

  • Sillmann J, Roeckner E (2007) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104. doi:10.1007/s10584-007-9308-6

    Article  Google Scholar 

  • Skansi M, Brunet M, Sigró J et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi:10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  • Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:561–576. doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2

    Article  Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008. doi:10.1029/98WR02577

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E, Timbal B (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf

  • Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27:935–946. doi:10.1016/j.csr.2006.12.007

    Article  Google Scholar 

  • Xiao M, Zhang Q, Singh VP (2016) Spatiotemporal variations of extreme precipitation regimes during 1961–2010 and possible teleconnections with climate indices across China. Int J Climatol. doi:10.1002/joc.4719

    Google Scholar 

  • Yan H, Moradkhani H (2015) A regional Bayesian hierarchical model for flood frequency analysis. Stoch Environ Res Risk Assess 29:1019–1036. doi:10.1007/s00477-014-0975-3

    Article  Google Scholar 

  • Yan H, Moradkhani H (2016) Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards 81:203–225. doi:10.1007/s11069-015-2070-6

    Article  Google Scholar 

  • Yan H, Moradkhani H, Zarekarizi M (2017) A probabilistic drought forecasting framework: a combined dynamical and statistical approach. J Hydrol 548:291–304. doi:10.1016/j.jhydrol.2017.03.004

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

  • Zhang X, Alexander L, Hergel GC, Jones P, Kelin Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi:10.1002/wcc.147

    Article  Google Scholar 

  • Zolina O, Simmer C, Belyaev K, Kapala A, Gulev S (2009) Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J Hydrometeorol 10:701–716. doi:10.1175/2008JHM1055.1

    Article  Google Scholar 

  • Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett. doi:10.1029/2010GL042468

    Google Scholar 

  • Zolina O, Simmer C, Belyaev K, Gulev S, Koltermann P (2013) Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26:2022–2047. doi:10.1175/JCLI-D-11-00498.1

    Article  Google Scholar 

Download references

Acknowledgements

Partial financial support for this study was provided by the DOE, Cooperative Agreement 00063182 and institute for sustainable solution at Portland State University. The authors would also like to acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model outputs. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahkameh Zarekarizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarekarizi, M., Rana, A. & Moradkhani, H. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA. Clim Dyn 50, 4519–4537 (2018). https://doi.org/10.1007/s00382-017-3888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3888-2

Keywords

Navigation