Climate Dynamics

, Volume 50, Issue 11–12, pp 4519–4537 | Cite as

Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

  • Mahkameh Zarekarizi
  • Arun Rana
  • Hamid Moradkhani


There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971–2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).


Precipitation extremes Climatic indices Statistical downscaling Dynamical downscaling Pacific North–West (PNW) Principal component analysis (PCA) Singular value decomposition (SVD) 



Partial financial support for this study was provided by the DOE, Cooperative Agreement 00063182 and institute for sustainable solution at Portland State University. The authors would also like to acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model outputs. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.


  1. Ahmadalipour A, Moradkhani H, Rana A (2017a) Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Clim Dyn 1–17. doi: 10.1007/s00382-017-3639-4
  2. Ahmadalipour A, Moradkhani H, Yan H, Zarekarizi M (2017b) Remote sensing of drought: Vegetation, soil moisture and data assimilation. In: Remote sensing of hydrological extremesGoogle Scholar
  3. Ahmadalipour A, Rana A, Moradkhani H, Sharma A (2015) Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor Appl Climatol 1–17. doi: 10.1007/s00704-015-1695-4
  4. Bürger G, Murdock TQ, Werner AT et al (2012) Downscaling extremes—an intercomparison of multiple statistical methods for present climate. J Clim 25:4366–4388. doi: 10.1175/JCLI-D-11-00408.1 CrossRefGoogle Scholar
  5. Cayan DR, Redmond KT, Riddle LG (1999) ENSO and hydrologic extremes in the Western United States. J Clim 12:2881–2893. doi: 10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2 CrossRefGoogle Scholar
  6. Costa AC, Soares A (2009) Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. Int J Climatol 29:1956–1975. doi: 10.1002/joc.1834 CrossRefGoogle Scholar
  7. Deni SM, Jemain AA, Ibrahim K (2008) The spatial distribution of wet and dry spells over peninsular Malaysia. Theor Appl Climatol 94:163–173. doi: 10.1007/s00704-007-0355-8 CrossRefGoogle Scholar
  8. Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69:245–268. doi: 10.1007/s10584-005-1157-6 CrossRefGoogle Scholar
  9. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M et al. (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res. doi: 10.1002/jgrd.50150 Google Scholar
  10. Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Chang 3:1033–1038. doi: 10.1038/nclimate2051 CrossRefGoogle Scholar
  11. Frich P, Alexander L, Della-Marta P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi: 10.3354/cr019193 CrossRefGoogle Scholar
  12. Gershunov A, Barnett TP (1998) ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: observations and model results. J Clim 11:1575–1586. doi: 10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2 CrossRefGoogle Scholar
  13. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi: 10.1175/2008JCLI2429.1 CrossRefGoogle Scholar
  14. Halmstad A, Najafi MR, Moradkhani H (2013) Analysis of precipitation extremes with the assessment of regional climate models over the Willamette River Basin, USA. Hydrol Process 27:2579–2590. doi: 10.1002/hyp.9376 CrossRefGoogle Scholar
  15. Haylock MR, Peterson TC, Alves LM et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512. doi: 10.1175/JCLI3695.1 CrossRefGoogle Scholar
  16. Hu Q (1997) On the uniqueness of the singular value decomposition in meteorological applications. J Clim 10:1762–1766. doi: 10.1175/1520-0442(1997)010<1762:OTUOTS>2.0.CO;2 CrossRefGoogle Scholar
  17. Huang S, Huang Q, Chang J, Leng G (2015) Linkages between hydrological drought, climate indices and human activities: a case study in the Columbia River basin. Int J Climatol 36:280–290. doi: 10.1002/joc.4344 CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Pachauri RK, Reisinger A (eds) Core writing team. IPCC, GenevaGoogle Scholar
  19. Irannezhad M, Chen D, Kløve B, Moradkhani H (2017) Analysing the variability and trends of precipitation extremes in Finland and their connection to atmospheric circulation patterns. Int J Climatol 37:1053–1066. doi: 10.1002/joc.5059
  20. Jones C (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian Oscillation. J Clim 13:3576–3587. doi: 10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2 CrossRefGoogle Scholar
  21. Leander R, Buishand TA, Klein Tank AMG (2014) An alternative index for the contribution of precipitation on very wet days to the total precipitation. J Clim. 27: 1367–1378. doi: 10.1175/JCLI-D-13-00144.1 CrossRefGoogle Scholar
  22. Livneh B, Rosenberg EA, Lin C, Nijssen B et al (2013) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J Clim 23:9384CrossRefGoogle Scholar
  23. Lyon B, Barnston AG (2005) ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J Clim 18:5095–5109. doi: 10.1175/JCLI3598.1 CrossRefGoogle Scholar
  24. Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82:619–638. doi: 10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2 CrossRefGoogle Scholar
  25. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New YorkGoogle Scholar
  26. Meier HEM (2006) Baltic sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68. doi: 10.1007/s00382-006-0124-x CrossRefGoogle Scholar
  27. Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi: 10.1038/nature09763 CrossRefGoogle Scholar
  28. Moradkhani H, Meier M (2010) Long-lead water supply forecast using large-scale climate predictors and independent component analysis. J Hydrol Eng 15:744–762. doi: 10.1061/(ASCE)HE.1943-5584.0000246 CrossRefGoogle Scholar
  29. Najafi MR, Moradkhani H (2013) Analysis of runoff extremes using spatial hierarchical Bayesian modeling. Water Resour Res 49:6656–6670. doi:  10.1002/wrcr.20381 CrossRefGoogle Scholar
  30. Ning L, Riddle EE, Bradley RS (2015) Projected changes in climate extremes over the Northeastern United States. J Clim 28:3289–3310. doi: 10.1175/JCLI-D-14-00150.1 CrossRefGoogle Scholar
  31. Rana A, Moradkhani H (2015) Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim Dyn 47:579–600. doi: 10.1007/s00382-015-2857-x CrossRefGoogle Scholar
  32. Rana A, Uvo CB, Bengtsson L, Parth Sarthi P (2012) Trend analysis for rainfall in Delhi and Mumbai, India. Clim Dyn 38:45–56. doi: 10.1007/s00382-011-1083-4 CrossRefGoogle Scholar
  33. Rana A, Moradkhani H, Qin Y (2016) Understanding the joint behavior of temperature and precipitation for climate change impact studies. Theor Appl Climatol 1–19. doi: 10.1007/s00704-016-1774-1
  34. Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180. doi: 10.1016/j.gloplacha.2004.06.010 CrossRefGoogle Scholar
  35. Schmidli J, Goodess CM, Frei C, Haylock MR, Hundecha Y, Ribalaygua J, Schmith T (2007) Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J Geophys Res 112:D04105. doi: 10.1029/2005JD007026 CrossRefGoogle Scholar
  36. Sillmann J, Roeckner E (2007) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104. doi: 10.1007/s10584-007-9308-6 CrossRefGoogle Scholar
  37. Skansi M, Brunet M, Sigró J et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi: 10.1016/j.gloplacha.2012.11.004 CrossRefGoogle Scholar
  38. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485CrossRefGoogle Scholar
  39. Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:561–576. doi: 10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2 CrossRefGoogle Scholar
  40. Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008. doi: 10.1029/98WR02577 CrossRefGoogle Scholar
  41. Wilby RL, Charles SP, Zorita E, Timbal B (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods.
  42. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27:935–946. doi: 10.1016/j.csr.2006.12.007 CrossRefGoogle Scholar
  43. Xiao M, Zhang Q, Singh VP (2016) Spatiotemporal variations of extreme precipitation regimes during 1961–2010 and possible teleconnections with climate indices across China. Int J Climatol. doi: 10.1002/joc.4719 Google Scholar
  44. Yan H, Moradkhani H (2015) A regional Bayesian hierarchical model for flood frequency analysis. Stoch Environ Res Risk Assess 29:1019–1036. doi: 10.1007/s00477-014-0975-3 CrossRefGoogle Scholar
  45. Yan H, Moradkhani H (2016) Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards 81:203–225. doi: 10.1007/s11069-015-2070-6 CrossRefGoogle Scholar
  46. Yan H, Moradkhani H, Zarekarizi M (2017) A probabilistic drought forecasting framework: a combined dynamical and statistical approach. J Hydrol 548:291–304. doi: 10.1016/j.jhydrol.2017.03.004
  47. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi: 10.1175/JCLI-3318.1 CrossRefGoogle Scholar
  48. Zhang X, Alexander L, Hergel GC, Jones P, Kelin Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi: 10.1002/wcc.147 CrossRefGoogle Scholar
  49. Zolina O, Simmer C, Belyaev K, Kapala A, Gulev S (2009) Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J Hydrometeorol 10:701–716. doi: 10.1175/2008JHM1055.1 CrossRefGoogle Scholar
  50. Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett. doi: 10.1029/2010GL042468 Google Scholar
  51. Zolina O, Simmer C, Belyaev K, Gulev S, Koltermann P (2013) Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26:2022–2047. doi: 10.1175/JCLI-D-11-00498.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mahkameh Zarekarizi
    • 1
  • Arun Rana
    • 2
  • Hamid Moradkhani
    • 1
  1. 1.Department of Civil and Environmental EngineeringPortland State UniversityPortlandUSA
  2. 2.Swedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden

Personalised recommendations