Skip to main content

North American wintertime temperature anomalies: the role of El Niño diversity and differential teleconnections

Abstract

El Niño–Southern Oscillation (ENSO) teleconnections induced wintertime surface air temperature (SAT) anomalies over North America show inter-event variability, asymmetry, and nonlinearity. This diagnostic study appraises the assumption that ENSO-induced teleconnections are adequately characterized as symmetric shifts in the SAT probability distributions for North American locations. To this end, a new conditional quantile functional estimation approach presented here incorporates: (a) the detailed nature of location and amplitude of SST anomalies—in particular the Eastern Pacific (EP), Central Pacific (CP) ENSO events—based on its two leading principal components, and (b) over the entire range of SATs, characterize the differential sensitivity to ENSO. Statistical significance is assessed using a wild bootstrap approach. Conditional risk at upper and lower quartile SAT conditioned on archetypical ENSO states is derived. There is marked asymmetry in ENSO effects on the likelihood of upper and lower quartile winter SATs for most North American regions. CP El Niño patterns show 20–80% decrease in the likelihood of lower quartile SATs for Canada and US west coast and a 20–40% increase across southeastern US. However, the upper quartile SAT for large swathes of Canada shows no sensitivity to CP El Niño. Similarly, EP El Niño is linked to a 40–80% increase in the probability of upper quartile winter SATs for Canada and northern US and a 20% decrease for southern US and northern Mexico regions; however, little or no change in the risk of lower quartile winter temperatures for southern parts of North America. Localized estimate of ENSO-related risk are also presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ashok K, Behera SK, Rao SA, Wen H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  2. Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Clim 15(23):3427–3442. doi:10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2

    Article  Google Scholar 

  3. Basu S, Zhang X, Polyakov I, Bhatt US (2013) North American winter-spring storms: modeling investigation on tropical Pacific sea surface temperature impacts. Geophys Res Lett 40:5228–5233. doi:10.1002/grl.50990

    Article  Google Scholar 

  4. Beyene MT, Jain S (2015) Wintertime weather-climate variability and its links to early spring ice-out in Maine lakes. Limnol Oceanogr 60(6):1890–1905. doi:10.1002/lno.10148

    Article  Google Scholar 

  5. Bondell HD, Reich BJ, Wang H (2010) Noncrossing quantile regression curve estimation. Biometrika 97(4):825–838. doi: 10.1093/biomet/asq048

    Article  Google Scholar 

  6. Cai W, Santoso A, Wang G, Yeh SW, An SI, Cobb KM, Collins M, Guilyardi E, Jin FF, Kug JS, Lengaigne M (2015) ENSO and greenhouse warming. Nat Clim Change 5:849–859. doi:10.1038/nclimate2743

    Article  Google Scholar 

  7. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938. doi:10.1175/BAMS-D-13-00117.1

    Article  Google Scholar 

  8. Chen WY, van den Dool HM (1997) Asymmetric impact of tropical SST anomalies on atmospheric internal variability over the North Pacific. J Atmos Sci 54(6):725–740

    Article  Google Scholar 

  9. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi:10.1038/ngeo2234

    Article  Google Scholar 

  10. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948–present. J Geophys Res Atmos 113:D01103. doi:10.1029/2007JD008470

    Article  Google Scholar 

  11. Feng X, He X, Hu J (2011) Wild bootstrap for quantile regression. Biometrika 98(4):995–999. doi:10.1093/biomet/asr052

    Article  Google Scholar 

  12. He X, Zhu LX (2003) A lack-of-fit test for quantile regression. J Am Stat Assoc 98:1013–1022

    Article  Google Scholar 

  13. Hoerling MP, Kumar A (1997) Why do North American climate anomalies differ from one El Niño event to another? Geophys Res Lett 24(9):1059–1062. doi:10.1029/97GL00918

    Article  Google Scholar 

  14. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786

    Article  Google Scholar 

  15. Infanti JM, Ben P, Kirtman (2016) North American rainfall and temperature prediction response to the diversity of ENSO. Clim Dyn 46(9–10):3007–3023. doi:10.1007/s00382-015-2749-0

    Article  Google Scholar 

  16. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  17. Koenker R (2016) quantreg: quantile regression. R package version 5.29. https://CRAN.R-project.org/package=quantreg. Accessed 10 Mar 2016

  18. Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica. doi:10.2307/1913643

    Google Scholar 

  19. Koenker R, Hallock K (2001) Quantile regression: an introduction. J Econ Perspect 15(4):43–56

    Article  Google Scholar 

  20. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  21. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32(13):L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  22. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111(1):46–59. doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2

  23. NOAA CPC/National Oceanic and Atmospheric Administration Climate Prediction Center (2016) http://www.cpc.ncep.noaa.gov/data/indices/. Accessed 7 Dec 2016

  24. Ren H-L, Jin F-F (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031.35

    Article  Google Scholar 

  25. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007JCLI2100.1

    Article  Google Scholar 

  26. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38(10):L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  27. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14(8):1697–1701

    Article  Google Scholar 

  28. Wiedermann M, Radebach A, Donges JF, Kurths J, Donner RV (2016) A climate network-based index to discriminate different types of El Niño and La Niña. Geophys Res Lett 43:7176–7185. doi:10.1002/2016GL069119

    Article  Google Scholar 

  29. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  30. Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483

    Article  Google Scholar 

  31. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025. doi:10.1002/2013GL058964

    Article  Google Scholar 

Download references

Acknowledgements

NCEP Reanalysis data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website at http://www.cdc.noaa.gov/. This study is supported by National Science Foundation Awards 0904155 and 1055934, and NOAA award NA14OAR4320158.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mussie T. Beyene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9933 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beyene, M.T., Jain, S. North American wintertime temperature anomalies: the role of El Niño diversity and differential teleconnections. Clim Dyn 50, 4365–4377 (2018). https://doi.org/10.1007/s00382-017-3880-x

Download citation

Keywords

  • Winter SATs
  • El Niño Southern Oscillation (ENSO)
  • Surface Air Temperature (SAT)
  • Conditional Quantile
  • Conditional Risk