Climate Dynamics

, Volume 50, Issue 11–12, pp 4231–4247 | Cite as

Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

  • Tebikachew Betru Tariku
  • Thian Yew Gan


Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999–2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980–2001 which include a combination of wet and dry years of the NRB.


WRF Configuration of regional climate model Temperature Rainfall Short and longwave radiation of Nile River Basin 



The authors would like to thank Chun Chao Kuo for his valuable advice and support throughout this study. We are also grateful to Compute Canada’s WestGrid support staff for their assistance with technical issues of its supercomputers. This research partly was supported by Natural Science and Engineering Research Council of Canada and University of Alberta. ERA-Interim data used in this study was taken from of ECMWF, and the TRMM dataset was taken from the data provider GES DISC of NASA,


  1. Adeyewa ZD, Nakamura K (2003) Validation of TRMM radar rainfall data over major climatic regions in Africa. J Appl Meteorol 42:331–347. doi: 10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2 CrossRefGoogle Scholar
  2. Anyah RO, Semazzi FHM (2006) Climate variability over the Greater Horn of Africa based on NCAR AGCM ensemble. Theor Appl Climatol 86:39–62. doi: 10.1007/s00704-005-0203-7 CrossRefGoogle Scholar
  3. Anyah RO, Semazzi FHM (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27:357–371. doi: 10.1002/joc.1401 CrossRefGoogle Scholar
  4. Anyah RO, Semazzi FHM, Xie L (2006) Simulated physical mechanisms associated with multiscale climate variability over Lake Victoria Basin in East Africa. Mon Weather Rev 134:3588–3609. doi: 10.1175/MWR3266.1 CrossRefGoogle Scholar
  5. Brown AR (1996) Evaluation of parametrization schemes for the convective boundary layer using large-eddy simulation results. Bound Layer Meteor 81:167–200. doi: 10.1007/BF00119064 CrossRefGoogle Scholar
  6. Chen C-S, Lin Y-L, Peng W-C, Liu C-L (2010) Investigation of a heavy rainfall event over southwestern Taiwan associated with a subsynoptic cyclone during the 2003 Mei-Yu season. Atmos Res 95:235–254. doi: 10.1016/j.atmosres.2009.10.003 CrossRefGoogle Scholar
  7. Collins WD et al (2004) Description of the NCAR community atmosphere model (CAM3.0). Technical note TN-464+ STR, National Center for Atmospheric Research, Boulder, p. 214Google Scholar
  8. Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF (2008) Validation of high resolution satellite rainfall products over complex terrain. Int J Remote Sens 29:4097–4110CrossRefGoogle Scholar
  9. Diro GT, Tompkins AM, Bi X (2012) Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res 117:D16103. doi: 10.1029/2011JD016997
  10. Dudhia J (1989) Numerical study of convection observed during the winter experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 CrossRefGoogle Scholar
  11. Ek M, Mahrt L (1991) OSU 1-D PBL model user’s guide, version 1.04. Department of Atmospheric Sciences, Oregon State University, Corvallis, p 120Google Scholar
  12. Endris HS, Omondi P, Jain S et al (2013) Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J Clim 26:8453–8475. doi: 10.1175/JCLI-D-12-00708.1 CrossRefGoogle Scholar
  13. Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39:1241–1258. doi: 10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  14. Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105. doi: 10.1007/s00382-010-0785-3 CrossRefGoogle Scholar
  15. Fowle MA, Roebber PJ (2003) Short-range (0–48 h) numerical prediction of convective occurrence, mode,and location. Weather Forecast 18:782–794. doi: 10.1175/1520-0434(2003)018<0782:SHNPOC>2.0.CO;2 CrossRefGoogle Scholar
  16. Fritsch JM, Carbone RE (2004) Improving quantitative precipitation forecasts in the warm season: a USWRP research and development strategy. Bull Am Meteor Soc 85:955–965. doi: 10.1175/BAMS-85-7-955 CrossRefGoogle Scholar
  17. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  18. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  19. Hong SY, Lee JW (2009) Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos Res 93:818–831. doi: 10.1016/j.atmosres.2009.03.015 CrossRefGoogle Scholar
  20. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 CrossRefGoogle Scholar
  21. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi: 10.1175/MWR3199.1 CrossRefGoogle Scholar
  22. Hu X-M, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteor Climatol 49:1831–1844. doi: 10.1175/2010JAMC2432.1 CrossRefGoogle Scholar
  23. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi: 10.1029/2008JD009944 CrossRefGoogle Scholar
  24. Indeje M, Semazzi HMF, Ogallo JL (2000) ENSO signal in East African rainfall seasons. Int J Climatol 20:19–46. doi: 10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0 CrossRefGoogle Scholar
  25. IPCC-TGICA (2007) General guidelines on the use of scenario data for climate impact and adaptation assessment. Version 2. Prepared by T.R. Carter on behalf of the intergovernmental panel on climate change, task group on data and scenario support for impact and climate assessment, p. 66Google Scholar
  26. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 CrossRefGoogle Scholar
  27. Jones CG, Samuelsson P, Kjellström E (2011) Regional climate modelling at the Rossby Centre. Tellus A 63:1–3. doi: 10.1111/j.1600-0870.2010.00491.x CrossRefGoogle Scholar
  28. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl. Meteor 43:170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 CrossRefGoogle Scholar
  29. Katragkou E, Garcia-Diez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations with EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi: 10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  30. Koutsouris AJ, Chen D, Lyon SW (2016) Comparing global precipitation data sets in eastern Africa: a case study of Kilombero Valley, Tanzania. Int J Climatol 36:2000–2014. doi: 10.1002/joc.4476 CrossRefGoogle Scholar
  31. Lim K-SS, Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612. doi: 10.1175/2009MWR2968.1 CrossRefGoogle Scholar
  32. Lin YL, Rarley RD, Orville HD (1983) Bulk parameterization of the snowfield in a cloud model. J Clim Appl Meteor 22:1065–1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 CrossRefGoogle Scholar
  33. Mashingia F, Mtalo F, Bruen M (2014) Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania. Phys Chem Earth Parts 67–69:55–63. doi: 10.1016/j.pce.2013.09.013 CrossRefGoogle Scholar
  34. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875. doi: 10.1029/RG020i004p00851 CrossRefGoogle Scholar
  35. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 02:16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  36. Mohamed YA, van den Hurk BJJM, Savenije HHG, Bastiaanssen WGM (2005) Hydroclimatology of the Nile: results from a regional climate model. Hydrol Earth Syst Sci 9:263–278. doi: 10.5194/hess-9-263-2005 CrossRefGoogle Scholar
  37. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31:545–557. doi: 10.1002/joc.2098 CrossRefGoogle Scholar
  38. Mooney PA, Mulligan FJ, Fealy R (2013) Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–1995. J Clim 26:1002–1017. doi: 10.1175/JCLI-D-11-00676.1 CrossRefGoogle Scholar
  39. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two moment schemes. Mon Weather Rev 137:991–1007. doi: 10.1175/2008MWR2556.1 CrossRefGoogle Scholar
  40. Nair S, Srinivasan G, Nemani R (2009) Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J Meteorol Soc Jpn 87:927–939. doi: 10.2151/jmsj.87.927 CrossRefGoogle Scholar
  41. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003a) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: validation of TRMM rainfall products. J Appl Meteorol 42:1355–1368. doi: 10.1175/1520-0450(2003)042<1355:VOTAOR>2.0.CO;2 CrossRefGoogle Scholar
  42. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003b) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42:1337–1354. doi: 10.1175/1520-0450(2003)042<1337:VOTAOR>2.0.CO;2 CrossRefGoogle Scholar
  43. Nyakwada W (2009) Predictability of East African seasonal rainfall with sea surface temperature gradient modes, Ph.D. dissertation, University of Nairobi, pp 265Google Scholar
  44. Pohl B, Cretat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379. doi: 10.1007/s00382-011-1024-2 CrossRefGoogle Scholar
  45. Romilly TG, Gebremichael M (2011) Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol Earth Syst Sci 15:1505–1514. doi: 10.5194/hess-15-1505-2011 CrossRefGoogle Scholar
  46. Saha S et al (2010) NCEP climate forecast system reanalysis (CFSR) 6-h products, January 1979–December 2010. Research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed 20 Jul 2015
  47. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from Rain-Gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V6_050
  48. Screen JA, Simmonds I (2011) Erroneous Arctic temperature trends in the ERA-40 reanalysis: a closer look. J Clim 24:2620–2627. doi: 10.1175/2010JCLI4054.1 CrossRefGoogle Scholar
  49. Segele ZT, Leslie LM, Lamb PJ (2009a) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29:47–65. doi: 10.1002/joc.1681 CrossRefGoogle Scholar
  50. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker M, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN-475+STR, p 113.
  51. Smirnova TG, Brown JM, Benjamin SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125:1870–1884 doi: 10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2 CrossRefGoogle Scholar
  52. Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold season processes in the MAPS land surface scheme. J Geophys Res 105:4077–4086. doi: 10.1029/1999JD901047 CrossRefGoogle Scholar
  53. Sun L, Semazzi FHM, Giorgi F, Ogallo L (1999a) Application of the NCAR regional climate model to eastern Africa: 1. Simulation of the short rains of 1988. J Geophys Res 104(D6):6529–6548. doi: 10.1029/1998JD200051
  54. Sun L, Semazzi FHM, Giorgi F, Ogallo L (1999b) Application of the NCAR regional climate model to eastern Africa: 2. Simulation of interannual variability of short rains. J Geophys Res 104(D6):6549–6562. doi: 10.1029/1998JD200050
  55. Troy TJ, Wood EF (2009) Comparison and validation of gridded radiation products across northern Eurasia. Environ Res Lett 4:045008. doi: 10.1088/1748-9326/4/4/045008 CrossRefGoogle Scholar
  56. Zhang Q, Körnich H, Holmgren K (2013) How well do reanalyses represent the southern African precipitation? Clim Dyn 40:951. doi: 10.1007/s00382-012-1423-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations