Skip to main content

Advertisement

Log in

Numerical simulation of the observed near-surface East India Coastal Current on the continental slope

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We simulate the East India Coastal Current (EICC) using two numerical models (resolution \(0.1^{\circ } \times 0.1^{\circ }),\) an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of \(0.25^{\circ } \times 0.25^{\circ }\)) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amol P (2014) Intraseasonal variability of currents along west coast of India. Ph. D. Thesis, Goa University, Goa, India

  • Amol P, Shankar D, Aparna SG, Shenoi SSC, Fernando V, Mukherjee A, Agarvedekar Y, Khalap ST, Satelkar NP (2012) Observational evidence from direct current measurements for propagation of remotely forced waves on the shelf off the west coast of India. J Geophys Res 117:C05017. doi:10.1029/2011JC007606

    Article  Google Scholar 

  • Amol P, Shankar D, Fernando V, Mukherjee A, Aparna SG, Fernandes R, Michael GS, Khalap ST, Satelkar NP, Agarvadekar Y, Gaonkar MG, Tari AP, Kankonkar A, Vernekar SP (2014) Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope. J Earth Syst Sci 123:1045–1074

    Article  Google Scholar 

  • Aparna SG, McCreary JP, Shankar D, Vinayachandran PN (2012) Signatures of the Indian Ocean Dipole and EI Nino-Southern Oscillation events in sea level variations in the Bay of Bengal. J Geophys Res 117(C10):012. doi:10.1029/2012JC008055

    Article  Google Scholar 

  • Behara A, Vinayachandran PN (2016) An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. J Geophys Res 121:2425–2446. doi:10.1002/2015JC011325

    Article  Google Scholar 

  • Behringer DW (2007) The global ocean data assimilation system (GODAS) at NCEP. In: 11th symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Am Meteorol Soc, San Antonio, TX, vol 3.3

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Am Meteorol Soc, Washington State Convention and Trade Center, Seattle, Washington, vol 2.3, pp 11–15

  • Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon Weather Rev 126:1013–1021

    Article  Google Scholar 

  • Bell C, Vassie J, Woodworth P (1998) POL-PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). Tech Rep, Proudman Oceanogr Lab, Bidston Obs, Merseyside, UK

  • Benshila R, Durand F, Masson S, Badie R, Montegut C, Papa F, Madec G (2014) The upper Bay of Bengal salinity structure in a high-resolution model. Ocean Model 74:36–52. doi:10.1016/j.ocemod.2013.12.001

    Article  Google Scholar 

  • Böning C, Budich RG (1992) Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J Phys Oceanogr 22:361–381

    Article  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Bryan K, Lewis LJ (1979) A water mass model of the World Ocean. J Geophys Res 84:2503–2517

    Article  Google Scholar 

  • Chatterjee A, Shankar D, Shenoi SSC, Reddy GV, Michael GS, Ravichandran M, Gopalkrishna VV, Rao EPR, Bhaskar TVSU, Sanjeevan VN (2012) A new atlas for temperature and salinity for north Indian Ocean. J Earth Syst Sci 121:559–593

    Article  Google Scholar 

  • Chatterjee A, Shankar D, McCreary JP, Vinayachandran PN (2013) Yanai waves in the western equatorial Indian Ocean. J Geophys Res. doi:10.1002/jgrc.20121

    Article  Google Scholar 

  • Chatterjee A, Shankar D, Vinayachandran PN, McCreary JP (2017) Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. J Geophys Res 122:1–19. doi:10.1002/2016JC012300

    Article  Google Scholar 

  • Chen G, Wang D, Hou Y (2012) The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont Shelf Res 47:178–185

    Article  Google Scholar 

  • Cheng X, Xie SP, McCreary JP, Qi Y, Du Y (2013) Intraseasonal variability of sea surface height over the Bay of Bengal. J Geophys Res 118:1–15. doi:10.1002/jgrc.20075

    Article  Google Scholar 

  • Colella P, Woodward PR (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys 54:174–201

    Article  Google Scholar 

  • Cutler AN, Swallow JC (1984) Surface currents of the Indian ocean. Tech Rep, Inst Oceanogr Sci, Wormley, England

  • de Montégut CB, Vialard J, Shenoi SSC, Shankar D, Durand F, Eth’e C, Madec G (2007) Simulated seasonal and interannual variability of the mixed layer heat budget in the Northern Indian Ocean. J Clim 20:3249–3268. doi:10.1175/JCLI4148.1

    Article  Google Scholar 

  • Durand F, Shankar D, Montegu CD, Shenoi SSC, Blanke B, Madec G (2007) Modeling the barrier-layer formation in the southeastern Arabian Sea. J Clim 20:2109–2120. doi:10.1175/JCLI4112.1

    Article  Google Scholar 

  • Durand F, Shankar D, Montegut C, Shenoi SSC (2008) Estimating boundary currents from satellite altimetry: a case study for the east coast of India. J Oceanogr 64:831–845. doi:10.1007/s10872-008-0069-2

    Article  Google Scholar 

  • Durand F, Shankar D, Birol F, Shenoi SSC (2009) Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J Geophys Res 114(C02):013. doi:10.1029/2008JC004807

    Article  Google Scholar 

  • Eden C, Böning C (2002) Sources of eddy kinetic energy in the Labrador Sea. J Phys Oceanogr 32:3346–3363

    Article  Google Scholar 

  • Eigenheer A, Quadfasel D (2000) Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. J Geophys Res 105:3243–3252

    Article  Google Scholar 

  • Feistel R (2003) A new extended Gibbs thermodynamics potential of seawater. Prog Oceanogr 58:43–114

    Article  Google Scholar 

  • Francis PA, Vinayachandran PN, Shenoi SSC (2013) The Indian ocean forecast system. Curr Sci 104:1354–1368

    Google Scholar 

  • Gangopadhyay A, Bharatraj GN, Chaudhuri AH, Babu MT, Sengupta D (2013) On the nature of meandering of the springtime western boundary current in the Bay of Bengal. Geophys Res Lett 40:2188–2193. doi:10.1002/grl.50412

    Article  Google Scholar 

  • Griffies SM (1998) The Gent-McWilliams skew flux. J Phys Oceanogr 28:831–841

    Article  Google Scholar 

  • Griffies SM (2009) Elements of MOM4p1. Tech Rep. http://www.gfdl.noaa.gov

  • Griffies SM, Hallberg RW (2000) Biharmonic Friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  • Griffies SM, Gnanadesikan A, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD (1998) Isoneutral Diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830

    Article  Google Scholar 

  • Han W, McCreary JP (2001) Modeling salinity distributions in the Indian Ocean. J Geophys Res 106:859–877

    Article  Google Scholar 

  • Han W, Webster P (2002) Forcing mechanisms of sea level inter-annual variability in the Bay of Bengal. J Phys Oceanogr 32:216–239. doi:10.1175/1520-0485(2002) 032<0216

    Article  Google Scholar 

  • Han W, McCreary JP, Anderson DLT, Marino AJ (1999) Dynamics of the eastern surface jets in the equatorial Indian Ocean. J Phys Oceanogr 29:2191–2209

    Article  Google Scholar 

  • Han W, Lawrence DM, Webster PJ (2001) Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow. Geophys Res Lett 28:4215–4218

    Article  Google Scholar 

  • Han W, McCreary JP, Masumoto Y, Vialard J, Duncan B (2011) Basin resonances in the equatorial Indian Ocean. J Phys Oceanogr 41:1252–1270

    Article  Google Scholar 

  • Held IM (2005) The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1614. doi:10.1175/BAMS-86-11-1609

    Article  Google Scholar 

  • Hurburt HE, Thompson JD (1976) A numerical model of the Somali Current. J Phys Oceanogr 6:646–664

    Article  Google Scholar 

  • Hurlburt HE, Kindle JC, O’Brien JJ (1976) A numerical simulation of the onset of El Niño. J Phys Oceanogr 6:621–631

    Article  Google Scholar 

  • Jensen TG (1993) Equatorial variability and resonance in a wind-driven Indian Ocean model. J Geophys Res 98:22,533–22,552

    Article  Google Scholar 

  • Jensen TG (2001) Arabian sea and Bay of Bengal exchange of salt and tracers in an ocean model. Geophys Res Lett 28:3967–3970

    Article  Google Scholar 

  • Kalnay E, kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D, (1996) The NCAP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

  • KNMI (1952) Indische Ocean Oceanographische en Meteorologische Oegevens, 2nd edn, 24 charts

  • Knox RA (1976) On a long series of measurements of Indian Ocean equatorial currents near Addu Atoll. Deep Sea Res 23:211–221

    Google Scholar 

  • Kurian J, Vinayachandran PN (2007) Mechanisms of formation of Arabian Sea mini warm pool in a high resolution OGCM. J Geophys Res. doi:10.1029/2006JC003631

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Leetma A (1972) The response of the Somali Current to the southwest monsoon of 1970. Deep Sea Res 19:319–325

    Google Scholar 

  • Leetma A (1973) The response of the Somali Current at 2\(^\circ\)S to the southwest monsoon of 1971. Deep Sea Res 20:397–400

    Google Scholar 

  • Lin SJ (2004) A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307

    Article  Google Scholar 

  • Luyten JR, Roemmich DH (1982) Euatorial currents at semiannual period in the Indian Ocean. J Phys Oceanogr 12:406–413

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind of the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Madden RA, Julian PR (1993) Observations of the 40–50 day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Mariano AJ, Ryan EH, Perkins BD, Smithers S (1995) The Mariano global surface velocity analysis 1.0. USCG Report CG-D-34-95, Office of Engineering, Logistics, and Development, US Coast Guard

  • Masumoto Y, Hase H, Kuroda Y, Matsuura H (2005) Instraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys Res Lett. doi:10.1029/2004GL021896

    Article  Google Scholar 

  • McCreary JP (1976) Eastern tropical ocean response to changing wind systems: with application to El Niño. J Phys Oceanogr 6:632–645

    Article  Google Scholar 

  • McCreary JP (1980) Modelling wind-driven ocean circulation. Tech Rep, Hawaii Institute of Geophysics

  • McCreary JP (1981) A linear stratified ocean model of the coastal undercurrent. Philos Trans R Soc Lond A 302:385–413

    Article  Google Scholar 

  • McCreary JP (1984) Equatorial beams. J Mar Res 42:395–430

    Article  Google Scholar 

  • McCreary JP, Picaut J, Moore DW (1984) Effects of remote annual forcing in the eastern tropical Atlantic Ocean. J Mar Res 42:45–81

    Article  Google Scholar 

  • McCreary JP, Kundu PK, Molinari RL (1993) A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog Oceanogr 31:181–244

    Article  Google Scholar 

  • McCreary JP, Han W, Shankar D, Shetye SR (1996) Dynamics of the East India Coastal Current 2. Numerical solutions. J Geophys Res 101:13,993–14,010

    Article  Google Scholar 

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA the research Moored array for African–Asian–Australian monsoon analysis and prediction a new moored buoy array in the historically data-sparse Indian Ocean provides measurements to advance monsoon research and forecasting. Bull Am Meteorol Soc 90:459–480. doi:10.1175/2008BAMS2608.1

    Article  Google Scholar 

  • McPhaden MJ, Wang Y, Ravichandran M (2015) Volume transport of the Wyrtki jets and their relationship to the Indian Ocean dipole. J Geophys Res 120:5302–5317. doi:10.1002/2015JC010901

    Article  Google Scholar 

  • Menemenlis D, Hill C, Adcroft A, Campin J, Cheng B, Ciotti B, Fukumori I, Koehl A, Heimbach P, Henze C, Lee T, Stammer D, Taft J, Zhang J (2005) NASA supercomputer improves prospects for ocean climate research. EOS Trans AGU 86:86–89

    Article  Google Scholar 

  • Miyama T, McCreary JP, Jensen TG, Loschnigg J, Godfrey S, Ishida A (2003) Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Res I 50:2023–2047

    Article  Google Scholar 

  • Miyama T, McCreary JP, Sengupta D, Senan R (2006) Dynamics of Biweekly oscillations in the equatorial Indian Ocean. J Phys Oceanogr 36:827–846

    Article  Google Scholar 

  • Molinari RL, Olson D, Reverdin G (1990) Surface current distributions in the tropical Indian Ocean derived from compilations of surface buoy trajectories. J Geophys Res 95:7217–7238

    Article  Google Scholar 

  • Moore DW (1968) Planetary-gravity waves in an equatorial ocean. PhD Thesis, Harvard University, Cambridge, Massachusetts, USA

  • Moore DW, McCreary JP (1990) Excitation of intermediate frequency equatorial waves at a western ocean boundary: with application to observations from the Indian Ocean. J Geophys Res 95:5219–5231

    Article  Google Scholar 

  • Morel A, Antoine D (1994) Heating rate within the upper ocean in relation to its Bio-Optical state. J Phys Oceanogr 24:1652–1665

    Article  Google Scholar 

  • Mukherjee A, Shankar D, Aparna SG, Amol P, Fernando V, Fernandes R, Khalap S, Narayan S, Agarvadekar Y, Gaonkar M, Tari P, Kankonkar A, Vernekar S (2013) Near-inertial currents off the east coast of india. Cont Shelf Res 55:29–39. doi:10.1016/j.csr.2013.01.007

    Article  Google Scholar 

  • Mukherjee A, Shankar D, Fernando V, Amol P, Aparna SG, Fernandes R, Michael GS, Khalap ST, Satelkar NP, Agarvadekar Y, Gaonkar MG, Tari AP, Kankonkar A, Vernekar SP (2014) Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope. J Earth Syst Sci 123:1197–1232

    Article  Google Scholar 

  • Murty BC (1958) On the temperature and salinity structure of the Bay of Bengal. Curr Sci 27:249

    Google Scholar 

  • Nethery D, Shankar D (2007) Vertical propagation of baroclinic Kelvin waves along the west coast of India. J Earth Syst Sci 116:331–339

    Article  Google Scholar 

  • O’Brien JJ, Adamec D, Moore DW (1978) A simple model of upwelling in the Gulf of Guinea. Geophys Res Lett 5:641–644. doi:10.1029/GL005i008p00641

    Article  Google Scholar 

  • O’Neill K (1984) Equatorial velocity profiles, part I, Meridional components. J Phys Oceanogr 14:1829–1841

    Article  Google Scholar 

  • Picaut J (1983) Propagation of seasonal coastal upwelling in the eastern equatorial Atlantic. J Phys Oceanogr 13:18–37

    Article  Google Scholar 

  • Potemra JT, Luther ME, O’Brien JJ (1991) The seasonal circulation of the upper ocean in the Bay of Bengal. J Geophys Res 96:12,667–12,683. doi:10.1029/91JC01045

    Article  Google Scholar 

  • Reppin J, Schott FA, Fischer J, Quadfasel D (1998) Equatorial currents and transports in the upper central Indian Ocean: annual cycle and interannual variability. J Geophys Res 104:15,495–15,514

    Article  Google Scholar 

  • Schott FA, McCreary JP (2001) Currents and transports of the Monsoon Current south of Sri Lanka. Prog Oceanogr 51:1–120

    Article  Google Scholar 

  • Sengupta D, Senan R, Murty V, Fernando V (2004) A biweekly mode in the equatorial Indian Ocean. J Geophy Res. doi:10.1029/2004JC002329

    Article  Google Scholar 

  • Shankar D (1998) Low-frequency variability of sea level along the coast of India. PhD Thesis, Goa Univ., India

  • Shankar D (2000) Seasonal cycle of sea level and currents along the coast of India. Curr Sci 78:279–288

    Google Scholar 

  • Shankar D, Shetye SR (1997) On the dynamics of the Lakshadweep high and low in southeastern Arabian Sea. J Geophys Res 102:12,551–12,562

    Article  Google Scholar 

  • Shankar D, Shetye SR (1999) Are interdecadal sea level changes along the Indian coast influenced by variability of monsoon rainfall? J Geophys Res 104:26,031–26,042

    Article  Google Scholar 

  • Shankar D, McCreary JP, Han W, Shetye SR (1996) Dynamics of the East India Coastal Current 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J Geophys Res 101:13,975–13,991

    Article  Google Scholar 

  • Shankar D, Vinayachandran PN, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52:63–120

    Article  Google Scholar 

  • Shankar D, Aparna SG, Mccreary JP, Suresh I, Neetu S, Durand F, Shenoi SSC, Saafani MAA (2010) Minima of interannual sea-level variability in the Indian Ocean. Prog Oceanogr 84:225–241

    Article  Google Scholar 

  • Shenoi SSC, Saji PK, Almeida AM (1999) Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters. J Mar Res 57:885–907

    Article  Google Scholar 

  • Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface arabian sea and bay of bengal: Implications for the summer monsoon. J Geophys Res. doi:10.1029/2000JC000679

    Article  Google Scholar 

  • Shetye SR (1993) The movement and implications of the Ganges-Brahmaputra runoff on entering the Bay of Bengal. Curr Sci 64:32–38

    Google Scholar 

  • Shetye SR (1998) West India Coastal Current and Lakshadweep high/low. Sadhana 23:637–651

    Article  Google Scholar 

  • Shetye SR, Gouveia AD (1998) Coastal circulation in the North Indian Ocean. Coastal segment (14, S-W). Sea 11:523–556

    Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Sundar D, Michael GS, Almeida AM, Santanam K (1990) Hydrography and circulation off the west coast of India during the southwest monsoon 1987. J Mar Res 48:359–378

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Michael GS, Sundar D, Almeida AM, Santanam K (1991a) The coastal current off western India during the northeast monsoon. Deep Sea Res 38:1517–1529

    Article  Google Scholar 

  • Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, Nampoothiri G (1991b) Wind-driven coastal upwelling along the western boundary of Bay of Bengal during southwest monsoon. Cont Shelf Res 11:1397–1408

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC, Sundar D, Michael GS, Nampoothiri G (1993) The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J Geophys Res 98:945–954

    Article  Google Scholar 

  • Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, Sundar D, Michael GS, Nampoothiri G (1996) Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J Geophys Res 101:14,011–14,025

    Article  Google Scholar 

  • Shetye SR, Suresh I, Shankar D, Sundar D, Jayakumar S, Mehra P, Prabhudesai RG, Pednekar PS (2008) Observational evidence for remote forcing of the West India Coastal Current. J Geophys Res. doi:10.1029/2008JC004874, c11001

    Article  Google Scholar 

  • Sikhakolli R, Sharma R, Basu S, Gohil BS, Sarkar A, Prasad KVSR (2013) Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in-situ data. J Earth Syst Sci 122:187–199

    Article  Google Scholar 

  • Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263

    Article  Google Scholar 

  • Sindhu B, Suresh I, Unnikrishnan AS, Bhatkar NV, Neetu S, Michael GS (2007) Improved bathymetric datasets for the shallow water regions in the Indian Ocean. J Earth Syst Sci 116:261–274

    Article  Google Scholar 

  • Sreenivas P, Gnanaseelan C, Prasad KVSR (2012) Influence of EI Nino and Indian Ocean Dipole on sea level variability in the Bay of Bengal. Glob Planet Change 80–81:215–225. doi:10.1016/j.gloplacha.2011.11.001

    Article  Google Scholar 

  • Srinivas K, Kumar PKD, Revichandran C (2005) ENSO signature in the sea level along the coastline of the Indian subcontinent. Indian J Mar Sci 34:225–236

    Google Scholar 

  • Stammer D, Wunsch C, Fukumori I, Marshall J (2002a) State estimation in modern oceanographic research. EOS Trans AGU 83(27):294–295

    Article  Google Scholar 

  • Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2002b) The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J Geophys Res 107(C9):3118. doi:10.1029/2001JC000888

    Article  Google Scholar 

  • Suresh I, Vialard J, Lengaigne M, Han W, McCreary J, Durand F, Muraleedharan PM (2013) Origins of wind-driven intraseasonal sea level variations in the north Indian Ocean coastal waveguide. Geophys Res Lett 40:5740–5744. doi:10.1002/2013GL058312

    Article  Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The water masses and currents of the oceans. Prentice-Hall, New York

    Google Scholar 

  • Tsai PTH, O’Brien JJ, Luther ME (1992) The 26-day oscillation observed in the satellite sea surface temperature measurements in the equatorial western Indian Ocean. J Geophys Res 97:9605–9618

    Article  Google Scholar 

  • Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009) Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden–Julian Oscillation. Geophys Res Lett. doi:10.1029/2009GL038,450

    Article  Google Scholar 

  • Vinayachandran PN, Shetye SR, Sengupta D, Gadgil S (1996) Forcing mechanisms of the Bay of Bengal circulation. Curr Sci 71:753–763

    Google Scholar 

  • Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous condition during 2006. Geophy Res Lett. doi:10.1029/2007GL030194

    Article  Google Scholar 

  • Vinayachandran PN, Neema CP, Mathew S, Remya R (2012) Mechanisms of summer intraseasonal sea surface temperature oscillations in the Bay of Bengal. J Geophys Res. doi:10.1029/2011JC007433

    Article  Google Scholar 

  • Wyrtki K (1971) Oceanographic atlas of the International Indian Ocean Expedition. Tech Rep, National Science Foundation, Washington, D.C., p 531

  • Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño–the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Yoshida K (1959) A theory of the cromwell current and of the equatorial upwelling—an interpretation in a similarity to a coastal circulation. J Oceanogr Soc Jpn 15:159–170

    Article  Google Scholar 

  • Yu L, O’Brien JJ, Yang J (1991) On the remote forcing of the circulation in the Bay of Bengal. J Geophys Res 96:20,449–20,454. doi:10.1029/91JC02424

    Article  Google Scholar 

Download references

Acknowledgements

The LCS and MOM4p1 simulations were initially carried out at the parallel computer Pravah at CSIR-NIO, but the final model simulations were carried out on Aaditya, the high-performace computer at the Indian Institute of Tropical Meteorology (IITM, Pune); this system was accessed from INCOIS. We thank S. G. Aparna and Vineet Jain for help with the LCS model and Soumya Mukhopadhyay for questioning the role of equatorial forcing at intraseasonal periods. Comments from Julian McCreary on an earlier draft of this paper and from two anonymous reviewers helped improve it significantly. The FORTRAN code for wavelet analysis and the R package for wavelet coherence spectra were downloaded from http://paos.colorado.edu/research/wavelets and http://tocsy.agnld.uni-potsdam.de/wavelets, respectively. Ferret was extensively used for analysis and graphics. This work was supported by Grants from the Council of Scientific and Industrial Research (CSIR) (under the Supra-Institutional Program of CSIR-NIO in the XI Plan and under OCEAN FINDER in the XII Plan) and the Ministry of Earth Sciences (MoES) via INCOIS. P. N. Vinayachandran thanks INCOIS for support via their HOOFS programme. This paper is part of the Ph.D. work of Mr. Arnab Mukherjee. This is INCOIS contribution 303 and CSIR-NIO contribution 6085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Shankar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7799 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Shankar, D., Chatterjee, A. et al. Numerical simulation of the observed near-surface East India Coastal Current on the continental slope. Clim Dyn 50, 3949–3980 (2018). https://doi.org/10.1007/s00382-017-3856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3856-x

Keywords

Navigation