Climate Dynamics

, Volume 50, Issue 9–10, pp 3865–3884 | Cite as

Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India

  • D. M. Lal
  • Sachin D. Ghude
  • M. Mahakur
  • R. T. Waghmare
  • S. Tiwari
  • Manoj K. Srivastava
  • G. S. Meena
  • D. M. Chate


The relationship between aerosol and lightning over the Indo-Gangetic Plain (IGP), India has been evaluated by utilising aerosol optical depth (AOD), cloud droplet effective radius and cloud fraction from Moderate Resolution Imaging Spectroradiometer. Lightning flashes have been observed by the lightning Imaging sensor on the board of Tropical Rainfall and Measuring Mission and humidity from modern-era retrospective-analysis for research and applications for the period of 2001–2012. In this study, the role of aerosol in lightning generation over the north-west sector of IGP has been revealed. It is found that lightning activity increases (decreases) with increasing aerosols during normal (deficient) monsoon rainfall years. However, lightning increases with increasing aerosol during deficient rainfall years when the average value of AOD is less than 0.88. We have found that during deficient rainfall years the moisture content of the atmosphere and cloud fraction is smaller than that during the years with normal or excess monsoon rainfall over the north-west IGP. Over the north-east Bay of Bengal and its adjoining region the variations of moisture and cloud fraction between the deficient and normal rainfall years are minimal. We have found that the occurrence of the lightning over this region is primarily due to its topography and localised circulation. The warm-dry air approaching from north-west converges with moist air emanating from the Bay of Bengal causing instability that creates an environment for deep convective cloud and lightning. The relationship between lightning and aerosol is stronger over the north-west sector of IGP than the north-east, whereas it is moderate over the central IGP. We conclude that aerosol is playing a major role in lightning activity over the north-west sector of IGP, but, local meteorological conditions such as convergences of dry and moist air is the principal cause of lightning over the north-east sector of IGP. In addition, atmospheric humidity also plays an important role in regulating the effect of aerosol on the microphysical properties of clouds over IGP region.



We thank Director, IITM, Pune for all necessary facility provided while carrying out this work. The authors are also thankful to Mr Abhay S. D. Rajput for his valuable suggestion in English grammar and thankful to Analyses and visualisations used in this study which was produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We acknowledge the mission scientists and Principal Investigators who provided the data used in this research.


  1. Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047Google Scholar
  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. Altaratz O, Koren I, Yair Y, Price C (2010) Lightning response to smoke from Amazonian fires. Geophys Res Lett 37:ARTN L07801CrossRefGoogle Scholar
  4. Altaratz O, Bar-Or RZ, Wollner U, Koren I (2013) Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ Res Lett 8 034025CrossRefGoogle Scholar
  5. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342CrossRefGoogle Scholar
  6. Antonescu B, Ştefan S (2011) The urban effect on the cloud-to-ground activity in the Bucharest area, Romania. Rom Rep Phys 63–2:535–542Google Scholar
  7. Betts AK (1997) The parameterization of deep convection. In: Smith RK (ed) The physics and parameterization of moist atmospheric convection. NATO ASI series, vol 505. Springer, Dordrecht, pp 255–279Google Scholar
  8. Blyth AM, Christian HJ, Driscoll K, Gadian AM, Latham J (2001) Determination of ice precipitation rate sand thunderstorm anvil ice contents from satellite observations of lightning. Atmos Res 59–60:217–229CrossRefGoogle Scholar
  9. Bonda DW, Steigera S, Zhanga R, Tieb X, Orvillea RE (2002) The importance of NOx production by lightning in the tropics. Atmos Environ 36:1509–1519CrossRefGoogle Scholar
  10. Bréon F-M, Tanré D, Generoso S (2002) Aerosol effect on cloud droplet size monitored from satellite. Science 295:834–838CrossRefGoogle Scholar
  11. Carey LD, Rutledge SA (1996) A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. J Meteorol Atmos Phys 59:33–64CrossRefGoogle Scholar
  12. Chand D, Wood R, Ghan SJ, Wang M, Ovchinnikov M, Rasch PJ, Miller S, Schichtel B, Moore T (2012) Aerosol optical depth increase in partly cloudy conditions. J Geophys Res 117:D17207. doi: 10.1029/2012JD017894 CrossRefGoogle Scholar
  13. Christian HJ, Blakeslee RJ, Goodman SJ, Mach DA, Stewart MF, Buechler DE, Koshak WJ, Hall JM, Boeck WL, Driscoll KT, Bocippio DJ (1999) The lightning imaging sensor. In: Proceedings of the 11th international conference on atmospheric electricity, Guntersville, Alabama, 7–11 June 1999, pp 746–749Google Scholar
  14. Dey S, Di Girolamo L (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of multiangle imaging spectroradiometer (MISR) data. J Geophys Res 115:D15204. doi: 10.1029/2009JD013395
  15. Dey S, Tripathi SN, Singh RP, Holben BN (2005) Seasonal variability of aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin. Adv Space Res 36:778–782Google Scholar
  16. Dey S, Girolamo LD, Zhao G, Jones A, McFarquhar G (2011) Satellite-observed relationships between aerosol and trade-wind cumulus cloud properties over the Indian Ocean. Geophys Res Lett 38:L01804. doi: 10.1029/2010GL045588 Google Scholar
  17. Di Girolamo L, Bond TC, Bramer D, Diner DJ, Fettinger F, Kahn RA, Martonchik JV, Ramana MV, Ramanathan V, Rasch PJ (2004) Analysis of multi-angle imaging spectro-radiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys Res Lett 31:L23115. doi: 10.1029/2004GL021273 CrossRefGoogle Scholar
  18. Dye JE, Jones JJ, Weinheimer AJ, Winn WP (1989) Observations within two regions of charge during initial thunderstorm electrification. Q J R Meteorol Soc 114(483):1271–1290CrossRefGoogle Scholar
  19. Farias WRG, Pinto Jr, O, Naccarato KP, Pinto IRCA (2009) Anomalous lightning activity over the metropolitan region of S˜ao Paulo due to urban effects. Atmos Res 91:485–490. doi: 10.1016/j.atmosres.2008.06.009 CrossRefGoogle Scholar
  20. Feingold G, Remer LA, Ramaprasad J, Kaufman YJ (2001) Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey’s approach. J Geophys Res 106:22,907–22,922CrossRefGoogle Scholar
  21. Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground based remote sensors. Geophys Res Lett 30(6):1287. doi: 10.1029/2002GL016633 CrossRefGoogle Scholar
  22. Ghude SD, Fadnavis S, Beig G, Polade SD, Van der A RJ (2008) Detection of surface emission hotspots, trends and seasonal cycle from satellites-retrieved NO2 over India. J Geophys Res 113. doi: 10.1029/2007JD009615
  23. Ghude SD, Kulkarni SH, Kulkarni PS, Kanawade VP, Fadnavis S, Pokhrel S, Jena C, Beig G, Bortoli D (2011) Anomalous low tropo-spheric column ozone over Eastern India during severe drought event of monsoon 2002: a case study. Environ Sci Pollut Res 18:1442–1455CrossRefGoogle Scholar
  24. Goswami BB, Mukhopadhyay P, Mahanta R, Goswami BN (2010) Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J Geophys Res 115:D12114. doi: 10.1029/2009JD012275 CrossRefGoogle Scholar
  25. Holroyd EW (1982) Some observations on the mountain-generated cumulonimbus rainfall on the Northern Great Plains. J Appl Meteorol 21:560–565CrossRefGoogle Scholar
  26. IMD Drought Bulletin (2009) Indian meteorological department unified response strategy, sphere IndiaGoogle Scholar
  27. Indian Meteorological Department report (2010) South west monsoon 2010, Government of IndiaGoogle Scholar
  28. Indian Meteorological Department report (2012) Synoptic Meteorology 13/2013, Government of IndiaGoogle Scholar
  29. Jeong MJ, Li Z (2010) Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J Geophys Res 115:D00K32. doi: 10.1029/2009JD013547 CrossRefGoogle Scholar
  30. Jethva H, Satheesh SK, Srinivasan J (2005) Seasonal variability of aerosols over the Indo-Gangetic basin. J Geophys Res 110:D21204. doi: 10.1029/2005JD005938
  31. Joyce R, Janowiak J, Huffman G (2001) Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J Appl Meteorol 40(4):689–703CrossRefGoogle Scholar
  32. Kalapureddy MCR, Kaskaoutis DG, Ernest Raj P, Devara PCS, Kambezidis HD, Kosmopoulos PG, Nastos PT (2009) Identification of aerosol type over the Arabian Sea in the premonsoon season during the integrated campaign for aerosols, gases and radiation budget (ICARB). J Geophy Res 114:D17203. doi: 10.1029/2009JD011826 CrossRefGoogle Scholar
  33. Kalthoff N, Adler B, Barthlott C, Corsmeier U, Mobbs S, Crewell S, Träumner K, Kottmeier C, Wieser A, Smith V, Di Girolamo P (2009) The impact of convergence zones on the initiation of deep convection: a case study from COPS. Atmos Res 93:680–694CrossRefGoogle Scholar
  34. Kar SK, Liou YA, Ha KJ (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92:80–87CrossRefGoogle Scholar
  35. Kar J, Deeter MN, Fishman J, Liu Z, Omar A, Creilson JK, Trepte CR, Vaughan MA, Winker DM (2010) Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmos Chem Phys 10:12273–12283CrossRefGoogle Scholar
  36. Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639CrossRefGoogle Scholar
  37. Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. P Natl Acad Sci USA 102:11207–11212. doi: 10.1073/pnas.0505191102 CrossRefGoogle Scholar
  38. Kedia S, Ramachandran S, Holben BN, Tripathi SN (2014) Quantification of aerosol type, and sources of aerosols over the Indo-Gangetic Plain. Atmos Environ 98:607–619CrossRefGoogle Scholar
  39. Klitch MA, Weaver JF, Kelly FP, Vonder Haar, TH (1985) Convective cloud climatologies constructed from satellite imagery. Mon Wea Rev 113:326–337CrossRefGoogle Scholar
  40. Koren I, Kaufman YJ, Remer LA, Martins JV (2004) Measurements of the effect of smoke aerosol on inhibition of cloud formation. Science 303:1342–1345CrossRefGoogle Scholar
  41. Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of the Atlantic convective clouds. Geophys Res Lett 32:L14828. doi: 10.1029/2005GL023187 CrossRefGoogle Scholar
  42. Koren I, Feingold G, Remer LA (2010) The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos Chem Phys 10:8855–8872. doi: 10.5194/acp-10-8855-2010 CrossRefGoogle Scholar
  43. Kumar PR, Kamra AK (2010) Lightning activity variations over three islands in a tropical monsoon region. Atmos Res 98:309–316CrossRefGoogle Scholar
  44. Lal DM, Pawar SD (2009) Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons. Atmos Res 92:402–410CrossRefGoogle Scholar
  45. Lal DM, Pawar SD (2011) Effect of urbanization on lightning over four metropolitan cities of India. Atmos Environ 45:191–196CrossRefGoogle Scholar
  46. Lal DM, Ghude SD, Patil SD, Kulkarni SH, Jena C, Tiwari S, Srivastav MK (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP) region, India. Atmos Res 116:82–92CrossRefGoogle Scholar
  47. Lal DM, Patil SD, Singh HN, Ghude SD, Tiwari S, Srivastava MK (2013) Influence of aerosol on clouds over the Indo-Gangetic Plain, India. Clim Dyn 41:601–612. doi: 10.1007/s00382-013-1775-z CrossRefGoogle Scholar
  48. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi: 10.1029/2006GL027546
  49. Lau WKM, Kim KM (2010) Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett. doi: 10.1029/2010GL043255 Google Scholar
  50. Lau KM, Kim MK, Sud YC, Walker GK (2009) A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann Geophys 27:4023–4037Google Scholar
  51. Li Z et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54:866–929. doi: 10.1002/2015RG000500 CrossRefGoogle Scholar
  52. Loeb NG, Schuster GL (2008) An observational study of the relationship between cloud, aerosol and meteorology in broken low level cloud conditions. J Geophys Res 113:D14214. doi: 10.1029/2007JD009763 CrossRefGoogle Scholar
  53. Marshak A, Wen G, Coakley JA, Remer LA, Loeb NG, Cahalan RF (2008) A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J Geophys Res Atmos 113:D14S17. doi: 10.1029/2007JD009196 CrossRefGoogle Scholar
  54. Meister G, McClain CR (2010) Point-spread function of the ocean color bands of the moderate resolution imaging spectroradiometer on aqua. Appl Optics 49:6276–6285CrossRefGoogle Scholar
  55. Met office version-1 (2007) National meteorological library and archive fact sheet 1 UK. An introduction to clouds (version 01). Accessed 17 Dec 2013
  56. Middleton NJ (1986) A geography of dust storms in southwest Asia. Int J Climatol 6:183–196CrossRefGoogle Scholar
  57. Mukhopadhyay P, Mahakur M, Singh AK (2009) The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata part I: doppler radar and satellite observations. J Earth Syst Sci 118(5):441–466CrossRefGoogle Scholar
  58. Nesbitt SW, Zhang R, Orville RE. (2000) Seasonal and global NOx production by lightning estimated from the optical transient detector (OTD). Tellus B 52:1206–1215CrossRefGoogle Scholar
  59. Orville HD (1965a) A numerical study of the initiation of cumulus clouds over mountainous terrain. J Atmos Sci 22:584–699Google Scholar
  60. Orville HD (1965b) A photogrammic study of the initiation of cumulus clouds over mountainous terrain. J Atmos Sci 22:700–709CrossRefGoogle Scholar
  61. Orville RE, Huffines GR, Nielsen-Gammon J, Zhang R, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning activity over Houston, Texas. Geophys Res Lett 28:2597–2600CrossRefGoogle Scholar
  62. Pawar SD, Lal DM, Murugavel P (2012) Lightning characteristics over central India during Indian summer monsoon. Atmos Res 106:44–49CrossRefGoogle Scholar
  63. Peng J et al (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci USA 113:4266–4271CrossRefGoogle Scholar
  64. Petersen WA, Rutledge SA, Orville RE (1996) Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon Weather Rev 124:602–620CrossRefGoogle Scholar
  65. Petersen WA, Cifelli RC, Ferrier BS, Smull BF (1999) Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull Amer Meteor Soc 80:81–97CrossRefGoogle Scholar
  66. Price C (1993) Global surface temperatures and the atmospheric electrical circuit. Geophys Res Lett 20(13):1363–1366Google Scholar
  67. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys. doi: 10.1029/2000RG000095 Google Scholar
  68. Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Ganges Plains. Pure App Geophys 162:1609–1626CrossRefGoogle Scholar
  69. Raymond D, Wilkening M (1980) Mountain-induced convection under fair weather conditions. J Atmos Sci 37:2693–2706CrossRefGoogle Scholar
  70. Reynolds SE, Brook M, Gourley MF (1957) “Thunderstorm charge separations”. J Meteorol 14:426–436CrossRefGoogle Scholar
  71. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRefGoogle Scholar
  72. Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313CrossRefGoogle Scholar
  73. Rosenfeld D., Williams E, Andreae MO, Freud E, P¨oschl U, Renn´o NO (2012) The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds. Atmos Meas Tech 5:2039–2055CrossRefGoogle Scholar
  74. Roy SC, Chatterji G (1929) Origin of Nor’westers. Nature 124:481. doi: 10.1038/124481a0 CrossRefGoogle Scholar
  75. Rutledge SA, Williams ER, Keenan TD (1992) The down under doppler and electricity experiment (DUNDEE): overview and preliminary results. Bull Am Meteorol Soc 73:3–16CrossRefGoogle Scholar
  76. Saunders CPR, Bax-Norman H, Emersic C, Avila EE, Castellano NE (2006) Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Q J R Meteorolog Soc 132(621):2653–2673CrossRefGoogle Scholar
  77. Sherwood SC (2002) Aerosols and ice particle size in tropical cumulonimbus. J Climate 15:1051–1063CrossRefGoogle Scholar
  78. Sherwood SC, Phillips VTJ, Wettlaufer JS (2006) Small ice crystals and the climatology of lightning. Geophys Res Lett 33:L05804. doi: 10.1029/2005GL025242 CrossRefGoogle Scholar
  79. Siingh D, Buchunde PS, Gandhi H, Singh R, Singh S, Patil MN, Singh RP (2015) Lightning and convective rain over Indian peninsula and Indo-China peninsula. Adv Space Res 55:1085–1103CrossRefGoogle Scholar
  80. Sikka DR (2003) Evaluation of monitoring and forecasting of summer monsoon over India and review of monsoon drought of 2002. Proc Indian Natn Sci Acad 69A:479–504Google Scholar
  81. Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi: 10.1029/2004JD004966 Google Scholar
  82. Small JD, Chuang PY, Feingold G, Jiang H (2009) Can aerosol decrease cloud lifetime? Geophys Res Lett 36:L16806. doi: 10.1029/2009GL038888 CrossRefGoogle Scholar
  83. Small JD, Jiang JH, Su H, Zhai C (2011) Relationship between aerosol and cloud fraction over Australia. Geophys Res Lett 38:L23802. doi: 10.1029/2011GL049404 CrossRefGoogle Scholar
  84. Srivastava MK, Srivastava SK, Saha A, Tiwari S, Singh S, Dumka UC, Singh BP, Singh NP (2011) Aerosol optical properties over Delhi and Manora peak during a rare dust event in early April 2005. Int J Remote Sens 32:7939–7954CrossRefGoogle Scholar
  85. Steiger SM, Orville RE (2003) Cloud-to-ground lightning enhancement over southern Louisiana. Geophys Res Lett 30(19):1975. doi: 10.1029/2003GL017923 CrossRefGoogle Scholar
  86. Steiger SM, Orville RE, Huffines G (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989e2000. J Geophys Res. doi: 10.1029/2001JD001142 Google Scholar
  87. Takahashi T (1978) “Riming electrification as a charge generation mechanism in thunderstorms”. J Atmos Sci 35:1536–1548CrossRefGoogle Scholar
  88. Toth J, Johnson RH (1985) Summer surface flow characteristics over northeast Colorado. Mon Wea Rev 113:1458–1469CrossRefGoogle Scholar
  89. Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanwade VP, Chauhan SSS, Sharma M, Reddy RR, Rama Gopal K, Narasimhulu K, Siva Sankara Reddy L, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin:1, physical and optical properties. J Geophys Res 111. doi: 10.1029/2006JD007278
  90. Twohy CH, Coakley JA, Tahnk WR (2009) Effect of changes in relative humidity on aerosol scattering near clouds J Geophys Res Atmos 114:D05205. doi: 10.1029/2008JD010991 CrossRefGoogle Scholar
  91. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. doi: 10.1175/1520-0469 CrossRefGoogle Scholar
  92. Tyagi A, Sikka DR, Goyal S, Bhomick M (2012) A satellite based study of pre-monsoon thunderstorms (Nor’westers) over eastern India and their organization into mesoscale convective complexes. Mausam 63:29–54Google Scholar
  93. Varnai T, Marshak A (2009) MODIS observations of enhanced clear sky reflectance near clouds Geophys Res Lett. doi: 10.1029/2008GL037089 Google Scholar
  94. Varnai T, Marshak A, Yang W (2013) Multi-satellite aerosol observations in the vicinity of clouds. Atmos Chem Phys 13:3899–3908CrossRefGoogle Scholar
  95. Wang C (2005) A modelling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J Geophys Res 110:D21211. doi: 10.1029/2004JD005720 CrossRefGoogle Scholar
  96. Wang Y, Wan Q, Meng W, Liao F, Tan H, Zhang R (2011) Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos Chem Phys 11:12421–12436CrossRefGoogle Scholar
  97. Wang Y, Khalizov A, Levy M, Zhang R (2013) Light absorbing aerosols and their atmospheric impacts. Atmos Environ 81:713–715CrossRefGoogle Scholar
  98. Wang Y, Lee K-H, Lin Y, Levy M, Zhang R (2014) Distinct effects of anthropogenic aerosols on tropical cyclones. Nat Clim Change 4:368–373CrossRefGoogle Scholar
  99. Wang Y, Jiang JH, Su H (2015) Atmospheric responses to the redistribution of anthropogenic aerosols. J Geoph Res Atmos 120:9625–9641. doi: 10.1002/2015JD023665 CrossRefGoogle Scholar
  100. Wen G, Marshak A, Cahalan RF, Remer LA, Kleidman RG (2007) 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J Geophys Res 112:D13204. doi: 10.1029/2006JD008267 CrossRefGoogle Scholar
  101. Wen G, Marshak A, Cahalan RF (2008) Importance of molecular Rayleigh scattering in the enhancement of clear sky reflectance in the vicinity of boundary layer cumulus clouds. J Geophys Res 113:D24207. doi: 10.1029/2008JD010592 CrossRefGoogle Scholar
  102. Wen G, Marshak A, Levy RC, Remer LA, Loeb NG, Varnai T, Cahalan RF (2013). Improvement of MODIS aerosol retrievals near clouds. J Geophy Res Atmos 118:9168–9181CrossRefGoogle Scholar
  103. Westcott NE (1995) Summertime cloud-to-ground lightning activity around major midwestern urban areas. J Appl Meteorol 34:1633–1642CrossRefGoogle Scholar
  104. Williams ER, Lhermitte RM (1983) Radar tests of the precipitation hypothesis for thunderstorm electrification. J Geophys Res 88(C15):10,984–10,992CrossRefGoogle Scholar
  105. Williams ER, Satori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J Atmos Solar Terr Phys 66:1213–1231CrossRefGoogle Scholar
  106. Williams E, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity. Cr Phys 3 (10):1277–1292CrossRefGoogle Scholar
  107. Williams ER, Zhang R, Rydock J (1991) Mixed-phase microphysics and cloud electrification. J Atmos Sci 48(19):2195–2203CrossRefGoogle Scholar
  108. Workman EJ, Reynolds SE (1949) Electrical activity as related to thunderstorm cell growth. Bull Am Meteorol Soc 30:142–149Google Scholar
  109. Xiong YJ, Qie X-S, Zhou Y-J, Yuan T, Zhang T-L (2006) Regional responses of lightninh activities to relative humidity of the surface. Chin J Geophys 49(2):311–318CrossRefGoogle Scholar
  110. Yuan T, Li Z, Zhang R, Fan J (2008) Increase of cloud droplet size with aerosol optical depth: an observation and modelling study. J Geophys Res 113:D04201. doi: 10.1029/2007JD008632 CrossRefGoogle Scholar
  111. Yuan T, Remer LA, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration.Geophy Res Latter:38:L04701. doi: 10.1029/2010GL046052Zhang Google Scholar
  112. Yuan T, Remer LA, Bian H, Ziemke JR, Albrecht R, Pickering KE, Oreopoulos L, Goodman SJ, Yu H, Allen DJ (2012) Aerosol indirect effect on tropospheric ozone via lightning. J Geophys Res 117:D18213. doi: 10.1029/2012JD017723 Google Scholar
  113. Zang R, Lei W, Tie X, Hess P (2004) Industrial emissions cause extreme diurnal urban ozone variability. P Natl Acad Sci 101:6346–6350CrossRefGoogle Scholar
  114. Zhang R, Li G, Fan J, Wu DL, Molina MJ (2007) Intensification of Pacific storm track linked to Asian pollution. P Natl Acad Sci 104:5295–5299. doi: 10.1073/pnas.0700618104 CrossRefGoogle Scholar
  115. Zhang R et al (2015) Formation of urban fine particulate matter. Chem Rev 115:3803–3855CrossRefGoogle Scholar
  116. Zipser EJ (1994) Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon Weather Rev 122:1837–1851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • D. M. Lal
    • 1
    • 2
  • Sachin D. Ghude
    • 1
  • M. Mahakur
    • 1
  • R. T. Waghmare
    • 1
  • S. Tiwari
    • 1
  • Manoj K. Srivastava
    • 2
  • G. S. Meena
    • 1
  • D. M. Chate
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of GeophysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations