Skip to main content
Log in

Extended-range prediction of South Atlantic convergence zone rainfall with calibrated CFSv2 reforecast

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

During the 2010–2011 wet season in Brazil, widespread landslides triggered by heavy rainfall killed hundreds of people and displaced nearly 35,000. The extreme precipitation was associated with the formation of the South Atlantic convergence zone (SACZ). Even though the physical mechanisms behind the formation and persistence of subtropical convergence zones are still unclear, we demonstrate that early predictions of heavy rainfall in the SACZ region are possible. Precipitation rate hindcasts from the NCEP Climate Forecast System version 2 are calibrated with the aid of a gridded precipitation dataset. When the calibration was applied to the 2010–2011 events, the hindcasts were able to depict both active and break phases of the SACZ with up to 2 weeks in advance during a period of relatively weak intraseasonal variability associated with the Madden–Julian Oscillation (MJO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean–atmosphere feedback in the South Atlantic convergence zone. Geophys Res Lett 34:L18809. doi:10.1029/2007GL030401

    Article  Google Scholar 

  • Bauer P, Thorpe A, Brunet G (2015) A quiet revolution of numerical weather prediction. Nature 525:47–55. doi:10.1038/nature14956

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, relationships with intraseasonal to interannual activity, and extreme rainfall. J Clim 17:88–108

    Article  Google Scholar 

  • Chaves RR, Nobre P (2004) Interactions between sea surface temperatures over the South Atlantic ocean and the South Atlantic convergence zone. Geophys Res Lett 31:L03204. doi:10.1029/2003GL018647

    Article  Google Scholar 

  • Chen M, Shi W, Xie P, Silva VBS, Kousky VE, Wayne Higgins R, Janowiak JE (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. doi:10.1029/2007JD009132

    Google Scholar 

  • CLIMANALISE (2010) Boletim de monitoramento e análise climática. CPTEC-INPE. http://climanalise.cptec.inpe.br/~rclimanl/boletim/index1210.shtml#. Accessed 30 November 2015

  • CLIMANALISE (2011) Boletim de monitoramento e análise climática. CPTEC-INPE. http://climanalise.cptec.inpe.br/~rclimanl/boletim/index0111.shtml#. Accessed 30 November 2015

  • Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. doi:10.1175/2008JCLI2429.1

    Article  Google Scholar 

  • Hirata FE, Grimm AM (2016) The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Clim Dyn 46:3041–3055. doi:10.1007/s00382-015-2751-6

    Article  Google Scholar 

  • Hopson TM, Webster PJ (2010) A 1–10 day ensemble forecast scheme for major river basins of Bangladesh: forecasting severe floods of 2003–07. J Hydrometeorol 11:618–641

    Article  Google Scholar 

  • Jones C, Gottschalck J, Carvalho LMV, Higgins W (2011) Influence of the Madden–Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. Mon Weather Rev 139:332–350. doi:10.1175/2010MWR3512.1

    Article  Google Scholar 

  • Kodama Y-M (1993) Large-scale common features of subtropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part II: Conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71:581–610

    Article  Google Scholar 

  • Kumar S, Dirmeyer PA, Kinter JL III (2014) Usefulness of ensemble forecasts from NCEP climate forecast system in sub-seasonal to intra-annual forecasting. Geophys Res Lett 41:3586–3593. doi:10.1002/2014GL059586

    Article  Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–677

    Article  Google Scholar 

  • Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891

    Article  Google Scholar 

  • Liu X, Yang S, Li Q, Kumar A, Weaver S, Liu S (2013) Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2. Clim Dyn 42:1487–1508. doi:10.1007/s00382-013-1831-8

    Article  Google Scholar 

  • Marengo JA, Alves LM (2012) Regional climates: The 2011 intense rainfall and floods in Rio de Janeiro. In: State of the climate in 2011. Bull Amer Meteor Soc, Vol 93(7), p S176

  • Niznik MJ, Lintner B, Matthews A, Widlansky MJ (2015) The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence Zone in CMIP5 models. J Clim 28(8):3353–3373. doi:10.1175/JCLI-D-14-00527.1

    Article  Google Scholar 

  • Nobre P, de Almeida RAF, Malagutti M, Giarolla E (2012) Coupled ocean–atmosphere variations over the South Atlantic ocean. J Clim 25:6349–6358. doi:10.1175/JCLI-D-11-00444.1

    Article  Google Scholar 

  • Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291

    Article  Google Scholar 

  • Nogués-Paegle J, Byerle LA, Mo KC (2000) Intraseasonal modulation of South American summer precipitation. Mon Weather Rev 128:837–850

    Article  Google Scholar 

  • Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic convergence zone. Mon Weather Rev 128:2947–2957

    Article  Google Scholar 

  • Robertson AW, Kumar A, Peña M, Vitart F (2015) Improving and promoting subseasonal to seasonal prediction. Bull. Am Meteorol Soc. doi:10.1175/BAMS-D-14-00139.1

    Google Scholar 

  • Saha S et al (2014) The NCEP Climate forecast system version 2. J Clim 27:2185–2208. doi:10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  • Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Déqué M, Ferranti L, Fucile E, Fuentes M, Hendon H, Hodgson J, Kang HS, Kumar A, Lin H, Liu G, Liu X, Malguzzi P, Mallas I, Manoussakis M, Mastrangelo D, MacLachlan C, McLean P, Minami A, Mladek R, Nakazawa T, Najm S, Nie Y, Rixen M, Robertson A, Ruti P, Sun C, Takaya Y, Tolstykh M, Venuti F, Waliser D, Woolnough S, Wu T, Won D, Xiao H, Zaripov R, Zhang L (2016) The sub-seasonal to seasonal prediction (S2S) project database. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-16-0017.1 (in press)

    Google Scholar 

  • Webster PJ, Jian J (2011) Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world. Philos Trans R Soc A. doi:10.1098/rsta.2011.0160.

    Google Scholar 

  • Webster PJ, Toma VE, Kim H-M (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett 30:L04806. doi:10.1029/2010GL046346

    Google Scholar 

  • Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific convergence zone. Clim Dyn 36(3–4):561–578. doi:10.1007/s00382-010-0871-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the National Council for Scientific and Technological Development (CNPq-Brazil) Grant BJT 400547/2013-9, and with the aid of the Inter-American Institute for Global Change Research (IAI) Grant CRN3035, which is supported by the US National Science Foundation (Grant GEO-1128040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando E. Hirata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, F.E., Grimm, A.M. Extended-range prediction of South Atlantic convergence zone rainfall with calibrated CFSv2 reforecast. Clim Dyn 50, 3699–3710 (2018). https://doi.org/10.1007/s00382-017-3836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3836-1

Keywords

Navigation