Climate Dynamics

, Volume 50, Issue 9–10, pp 3595–3612 | Cite as

Performance evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon

Article

Abstract

The study aims to evaluate the regional climate model (RegCM) over South Asian (SA) CORDEX domain to represent seasonal and sub-seasonal variability of Indian Summer Monsoon (ISM). The model’s ability is evaluated by conducting two sets of experiments using one-tier approach of coupling the RegCM with a simple mixed-layer slab ocean model (SOM) and the two-tier approach of prescribing sea surface temperature (SST) to RegCM. Two model experiments are initialized at 1st January 2000 for a period of 13 year continuous simulation at a spatial resolution of 50 km. It is found that, one-tier approach realistically represents the spatial distribution of precipitation with significant improvement noticed over central India (CI) and head Bay of Bengal (BoB) regions. In addition, it also fairly reproduced the observed mean meridional circulation response to the diabatic heating produced during ISM. Most importantly, in one-tier approach the model could able to represent the observed SST and precipitation (P) relationship with significant improvement in correlation and model response time. An important result is the representation of northwest-southeast tilt of precipitation anomalies during active/break phase of monsoon. Additionally, the lagged response of vertical profiles of specific humidity, omega, vorticity and divergence over CI with respect to peak rainfall anomaly (active phase) are relatively better represented in one-tier approach. In brief, coupling improves the performance of RegCM in simulating the space–time characteristics of monsoon ISO mode.

Keywords

Regional climate model Slab ocean model Active and break conditions Seasonal mean monsoon Intraseasonal variability of the monsoon 

Notes

Acknowledgements

We thank two anonymous reviewers for their valuable comments that helped us to improve the manuscript. The authors are thankful to Director, National Atmospheric Research Laboratory (NARL) for providing necessary facilities to carry out this work. We thankfully acknowledge ICTP for providing the regional climate model RegCM4.4. We wish to thank GPCP, ERA-Interim and OISST data products.

References

  1. Ajayamohan RS, Goswami BN (2003) Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Meteorol Atmos Phys 84:83–100. doi: 10.1007/s00703-002-0576-4
  2. Ajayamohan RS, Goswami BN (2007) Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J Atmos Sci 64:460–478. doi: 10.1175/JAS3844.1 CrossRefGoogle Scholar
  3. Befort DJ, Leckebusch GC, Cubasch U (2016) Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM. Clim Dyn 8:2635–2651Google Scholar
  4. Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12: 573–587. doi: 10.1007/s003820050129
  5. Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C (2007) A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO. Clim Dyn 28:441–460Google Scholar
  6. Chen M, Wang W, Kumar A et al (2012) Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J Clim 25:3566–3582. doi: 10.1175/JCLI-D-11-00318.1 CrossRefGoogle Scholar
  7. Das SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and precipitation using RegCM3. Theor Appl Climatol 86:161–172CrossRefGoogle Scholar
  8. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828
  9. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022CrossRefGoogle Scholar
  10. Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  11. Fu X, Wang B (2004) Different solutions of intraseasonal oscillation exist in atmosphere-ocean coupled model and atmosphere-only model. J Clim 17:1263–1271CrossRefGoogle Scholar
  12. Fu X, Wang B, Li T (2002) Impacts of air-sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon Weather Rev 130:2889–2904CrossRefGoogle Scholar
  13. Fu X, Wang B, Li T, McCreary JP (2003) Coupling between northward propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60:1733–1753CrossRefGoogle Scholar
  14. Fu X, Wang B, Waliser DE, Tao L (2007) Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64:157–174CrossRefGoogle Scholar
  15. Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV(139):101–118Google Scholar
  16. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Wea Rev 121:2794–2813CrossRefGoogle Scholar
  17. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832CrossRefGoogle Scholar
  18. Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29Google Scholar
  19. Goswami BN, Ajaya Mohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198. doi: 10.1175/1520-0442(2001)014>2.0.CO;2 CrossRefGoogle Scholar
  20. Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett. doi: 10.1029/2003GL017810 Google Scholar
  21. Goswami BB, Deshpande M, Mukhopadhyay P et al (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn. doi: 10.1007/s00382-014-2089-5
  22. Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377. doi: 10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2 CrossRefGoogle Scholar
  23. Hayashi Y (1982) Space-time spectral analysis and its applications to atmospheric waves. J Meteorol Soc Jpn 60(1):156–171CrossRefGoogle Scholar
  24. Hazra A, Krishnamurthy V (2015) Space-time structure of diabatic heating in monsoon intraseasonal oscillation. J Clim 28:2234–2255CrossRefGoogle Scholar
  25. Hendon HH (2000) Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J Atmos Sci 57:3939–3952. doi: 10.1175/1520-0469(2001)058>2.0.CO;2 CrossRefGoogle Scholar
  26. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50Google Scholar
  27. Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32:L22705CrossRefGoogle Scholar
  28. Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039CrossRefGoogle Scholar
  29. Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert SD, Waliser DE, Stern WF, Satyan V, Kitoh A, Meehl GA, Kanamitsu M, Galin VY, Kim JK, Sumi A, Wu G, Liu Y (2002) Intercomparision of the climatological variations of Asian Summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395CrossRefGoogle Scholar
  30. Kemball-Cook S, Fu X (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean mode. J Atmos Sci 59:1433–1453CrossRefGoogle Scholar
  31. Kemball-Cook S, Wang B (2001) Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J Clim 14:2923–2942CrossRefGoogle Scholar
  32. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420 + STR, p 152Google Scholar
  33. Kim EJ, Hong SY (2010) Impact of air–sea interaction on East Asian summer monsoon climate in WRF. J Geophys Res 115:D19118CrossRefGoogle Scholar
  34. Klingaman NP, Inness PM, Weller H, Slingo JM (2008) The importance of high- frequency sea surface temperature variability to the intraseasonal oscillations of Indian monsoon rainfall. J Clim 21:6119–6140CrossRefGoogle Scholar
  35. Konar´e A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi: 10.1029/2007JD009322 CrossRefGoogle Scholar
  36. Krishnamurti TN, Bhalme HN (1976) Oscillations of a Monsoon system. Part I. Observational aspects. J Atmos Sci 33:1937–1954CrossRefGoogle Scholar
  37. Kumar A, Zhang L, Wang W (2013) Sea surface temperature-precipitation relationship in different reanalyses. Mon Weather Rev 141:1118–1123CrossRefGoogle Scholar
  38. Lau NC, Nath MJ (2004) Coupled GCM simulation of atmosphere-ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265CrossRefGoogle Scholar
  39. Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27(3):1271–1289Google Scholar
  40. Maharana P, Dimri AP (2015) Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Clim Dyn. doi: 10.1007/s00382-015-2631-0
  41. Oleson KW, NiuGy, Yang ZL, Lawrence DM et al (2008) Improvements to the community land model and their impact on the hydrologic cycle. J Geophys Res 113:G01021. doi: 10.1029/2007JD000563 CrossRefGoogle Scholar
  42. Paeth H, Born K, Podzun R, Jacob D (2005) Regional dynamical downscaling over West Africa: model evaluation and comparison of wet and dry years. Meteorol Z 14(3):349–367CrossRefGoogle Scholar
  43. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: representation of sub-grid cloud and precipitation processes within RegCM4. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  44. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F, Bell J, Diffenbaugh N, Karmacharya J, Konare A, Martinez-Castro D, Porfirio da Rocha R, Sloan L, Steiner A (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  45. Poan ED, Gachon P, Dueymes G, Diaconesu E, Laprise R, Sanda I (2016) West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges. Clim Dyn. doi: 10.1007/s00382-016-3016-8 Google Scholar
  46. Rajendran K, Kitoh A, Arakawa O (2004) Monsoon low-frequency intraseasonal oscillation and ocean–atmosphere coupling over the Indian Ocean. Geophys Res Lett. doi: 10.1029/2003GL019031 Google Scholar
  47. Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2008) Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim Dyn. doi: 10.1007/s00382-008-0433-3
  48. Ratnam JV, Behera S, Masumoto Y, Takahashi K, Yamagata T (2012) A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Clim Dyn 39:2207–2217. doi: 10.1007/s00382-011-1190-2
  49. Sikka DR, Gadgil S (1980) On the Maximum Cloud Zone and the ITCZ over Indian, Longitudes during the Southwest Monsoon. Mon Weather Rev 108:1840–1853CrossRefGoogle Scholar
  50. Singh GP, Oh JH (2007) Impact of Indian Ocean sea surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465. doi: 10.1002/joc.1485 CrossRefGoogle Scholar
  51. Slingo JM, Annamalai H (2000) 1997: the El Nino of the century and the response of the Indian Summer Monsoon. Mon Wea Rev 128:1778–1797CrossRefGoogle Scholar
  52. Slingo JM, Sperber KR, Boyle JS, Ceron JP, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy JF, Hack J, Harzallah A, Inness P, Kitoh A, Lau WKM, McAvaney B, Madden R, Matthews A, Palmer TN, Park CK, Randall D, Renno N (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357Google Scholar
  53. Solmon F, Nair VS, Mallet M (2015) Increasing arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15:8051–8064CrossRefGoogle Scholar
  54. Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R, Kitoh A, Kobayashi C, Palmer T, Puri K, Tennant W, Volodin E (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248CrossRefGoogle Scholar
  55. Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn. doi: 10.1007/s00382-009-0543-6
  56. Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2010) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30:1865–1883. doi: 10.1002/joc.2029 Google Scholar
  57. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geo Res 106:7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  58. Teng H, Wang B (2003) Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J Clim 16:3572–3584CrossRefGoogle Scholar
  59. Umakanth U, Kesarkar AP, Rao TN, Rao S (2014) An objective criterion for the identification of breaks in Indian summer monsoon precipitation. Atmos Sci Lett 16(3):193–198. doi: 10.1002/asl2.536 Google Scholar
  60. Umakanth U, Kesarkar AP, Raju A, Rao S (2015) Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics. Clim Dyn. doi: 10.1007/s00382-015-2878-5
  61. Vernekar AD, Ji Y (1999) Simulation of the onset and intraseasonal variability of two contrasting summer monsoons. J Clim 12(6):1707–1725. doi: 10.1175/1520-0442(1999)012<1707:sotoai>2.0.co;2 CrossRefGoogle Scholar
  62. Waliser DE (2006) Intraseasonal variability. In: Wang B (ed) The Asian Monsoon, First. Springer Praxis books, pp 203–257Google Scholar
  63. Waliser DE, Lau KM, Kim JH (1999) The influence of coupled sea surface temperatures on the Madden–Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358CrossRefGoogle Scholar
  64. Waliser DE et al (2003a) AGCM Simulations of Intraseasonal Variability Associated with the Asian Summer Monsoon. Clim Dyn 21:423–446Google Scholar
  65. Waliser DE, Stern W, Schubert S, Lau KM (2003b) Dynamic Predictability of Intraseasonal Variability Associated with the Asian Summer Monsoon. Quart J R Meteorol Soc 129:2897–2925Google Scholar
  66. Wang B (2005) Theory. Intraseasonal variability in the atmosphere-ocean climate system. Springer-Praxis, Berlin, pp 307–351Google Scholar
  67. Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenges in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi: 10.1029/2005GL02273410.1029 CrossRefGoogle Scholar
  68. Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res 103:14451. doi: 10.1029/97JC02719 CrossRefGoogle Scholar
  69. Wu X, Liang X, Zhang GJ (2003) Seasonal migration of ITCZ precipitation across the equator: why can’t GCMs simulate it. Geophys Res Lett. doi: 10.1029/2003GL017198 Google Scholar
  70. Wu R, Kirtman BP, Pegion K (2008) Local rainfall-SST relationship on subseasonal time scales in satellite observations and CFS. Geophys Res Lett. doi: 10.1029/2008GL035883 Google Scholar
  71. Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Q J R Meteorol Soc 133:749–764. doi: 10.1002/qj.45 CrossRefGoogle Scholar
  72. Yanai M, Esbensen S, Chu J (1973) Determination of the bulk properties of tropical cloud clusters from large heat and moisture budgets. J Atmos Sci 30:611–627CrossRefGoogle Scholar
  73. Yasunari T (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Meteorol Soc Japan 57:227–242Google Scholar
  74. Zou L, Zhou T, Peng D (2016) Dynamical downscaling of historical climate over CORDEX East Asia domain: a comparison of regional ocean atmosphere coupled model to standalone RCM simulations. J Geophy Res Atmos 121:1442–1458. doi: 10.1002/2015JD023912

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Atmospheric Research LaboratoryGadankiIndia
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations