Skip to main content

Advertisement

Log in

Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the-art coupled models: role of the background snow-free land albedo

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

State-of-the-art global coupled models used in seasonal prediction systems and climate projections still have important deficiencies in representing the boreal summer tropical rainfall climatology. These errors include prominently a severe dry bias over all the Northern Hemisphere monsoon regions, excessive rainfall over the ocean and an unrealistic double inter-tropical convergence zone (ITCZ) structure in the tropical Pacific. While these systematic errors can be partly reduced by increasing the horizontal atmospheric resolution of the models, they also illustrate our incomplete understanding of the key mechanisms controlling the position of the ITCZ during boreal summer. Using a large collection of coupled models and dedicated coupled experiments, we show that these tropical rainfall errors are partly associated with insufficient surface thermal forcing and incorrect representation of the surface albedo over the Northern Hemisphere continents. Improving the parameterization of the land albedo in two global coupled models leads to a large reduction of these systematic errors and further demonstrates that the Northern Hemisphere subtropical deserts play a seminal role in these improvements through a heat low mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alessandri A, Gualdi S, Polcher J, Navarra A (2007) Effects of land surface-vegetation on the boreal summer surface climate of a GCM. J Clim 20:255–278

    Article  Google Scholar 

  • Annamalai H et al (2015) Persistence of systematic errors in the Asian-Australian monsoon precipitation in climate models: a way forward. Clivar Exch 66:19–22

    Google Scholar 

  • Ashfaq M, Rastogi D, Mei R, Touma D, Leung RL (2016) Sources of errors in the simulation of south Asian summer monsoon in CMIP5 GCMs. Clim Dyn Online, doi:10.1007/s00382-016-3337-7

    Google Scholar 

  • Biasutti M (2013) Forced Sahel rainfall trends in the CMIP5 archive. J Geophys Res 118:1613–1623

    Google Scholar 

  • Bollasina MA, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40:823–838

    Article  Google Scholar 

  • Bony S et al (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8:261–268

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222

    Article  Google Scholar 

  • Chakraborty A (2002) Role of Asian and African orography in Indian summer monsoon. Geophys Res Lett 29:1989

    Article  Google Scholar 

  • Charney J, Quirk WJ, Chow S, Kornfield J (1977) A comparative study of the effects of albedo change on drought in Semi–arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  • Chen T-C (2003) Maintenance of summer monsoon circulations: a planetary-scale perspective. J Climate 16:2022–2037

    Article  Google Scholar 

  • Cook KH, Vizy EK (2015) Detection and analysis of an amplified warming of the Sahara desert. J Climate 28:6560–6580

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Climate 19:4605–4630

    Article  Google Scholar 

  • Dai A et al (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res 118:7024–7045

    Article  Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dickinson RE (1983) Land surface processes and climate surface Albedos and energy-balance. Adv Geophys 25:305-353

  • Dirmeyer PA (1998) Land-sea geometry and its effect on monsoon circulations. J Geophys Res 103(D10):11,555–11,572

    Article  Google Scholar 

  • Doi T, Behera SK, Yamagata T (2016) Improved seasonal prediction using the SINTEX-F2 coupled model. J Adv Model Earth Syst 8:1847–1867. doi:10.1002/2016MS000744

  • Frierson DM et al (2013) Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat Geosci 6:940–944

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Goswami BB, Deshpande M, Mukhopadhyay P, Saha SK, Rao SA, Murthugudde R, Goswami BN (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn 43:2725–2745

    Article  Google Scholar 

  • Hawcroft M, Haywood J, Collins M, Jones A, Jones AC, Stephens G (2017) Southern albedo, interhemispheric energy transports and the ITCZ: global impacts of biases in a coupled model. Clim Dyn 48:2279–2295

    Article  Google Scholar 

  • Haywood JM et al (2016) The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys Res Lett 43:395–403

    Article  Google Scholar 

  • Hou Y-T, Moorthi S, Campana KA (2002) Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note 441

  • Houldcroft CJ, Grey WMF, Barnsley M, Taylor CM, Los SO, North PRJ (2009) New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J of Hydrometeorology 10:183–198

    Article  Google Scholar 

  • Hourdin F, Gainusa-Bogdan A, Braconnot P, Dufresne J-L, Traore A-K, Rio C (2015) Air moisture control on ocean surface temperature, hidden key to the warm bias enigma. Geophys Res Lett 42:10,885–10,893

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808

    Article  Google Scholar 

  • IPCC Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013) http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • Jiang XN, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Climate 17:1022–1039

    Article  Google Scholar 

  • Johnson SJ, Levine RC, Turner AG et al (2016) The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global _0.35° AGCM. Clim Dyn 46:807–831. doi:10.1007/s00382-015-2614-1

    Article  Google Scholar 

  • Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J Climate 21:3521–3532

    Article  Google Scholar 

  • Karlsson J, Svenson G (2013) Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophys Res Lett 40:4374–4379

    Article  Google Scholar 

  • Kato S et al (2013) Surface irradiances consistent with ceres-derived top-of-atmosphere shortwave and longwave Irradiances. J Clim 26:2719–2740

    Article  Google Scholar 

  • Kay JE, Wall C, Yettella V, Medeiros B, Hannay C, Caldwell P, Bitz C (2016) Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model. J Clim 29:4617–4636. doi:10.1175/JCLI-D-15-0358.1

    Article  Google Scholar 

  • Kelly P, Mapes B (2010) Land surface heating and the north american monsoon anticyclone: model evaluation from diurnal to seasonal. J Clim 23:4096–4106

    Article  Google Scholar 

  • Kelly P, Mapes B (2013) Asian monsoon forcing of subtropical easterlies in the community atmosphere model: summer climate implications for the western Atlantic. J Clim 26:2741–2755

    Article  Google Scholar 

  • Kim HM, Webster PJ, Curry JA, Toma VE (2013) Asian summer monsoon prediction in ECMWF system 4 and NCEP CFSv2 retrospective seasonal forecasts. Clim Dyn 39:2975–2991

    Article  Google Scholar 

  • Kumar P, Podzun R, Hagemann S, Jacob D (2014) Impact of modified soil thermal characteristic on the simulated monsoon climate over south Asia. J Earth Syst Sci 123:151–160

    Article  Google Scholar 

  • Lavaysse C (2015) Warming trends: Saharan desert warming. Nat Clim Change 5:807–808

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Evan A, Janicot S, Gaetani M (2016) Recent climatological trend of the Saharan heat low and its impact on the West African climate. Clim Dyn 47:3479–3498

    Article  Google Scholar 

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future predictions of Indian summer monsoon rainfall. Clim Dyn 41:155–172

    Article  Google Scholar 

  • Liang X, Liu Y, Wu G (2005a) The role of land-sea distribution in the formation of the Asian summer monsoon. Geophys Res Lett 32:L03708

    Google Scholar 

  • Liang X-Z et al (2005b) Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res 110:D11107. doi:10.1029/2004JD005579

    Article  Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Loeb NG et al (2012) Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv Geophys 33:359–385

    Article  Google Scholar 

  • Masson S, Terray P, Madec G, Luo J–J, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707

    Article  Google Scholar 

  • Mishra SK, Salvekar PS (1980) Role of barotropic instability in the development of monsoon disturbances. J Atmos Sci 37:383–394

    Article  Google Scholar 

  • Nicholson SE, Barcilon AI, Challa M, Baum M (2007) Wave Activity on the Tropical Easterly Jet. J Atmos Sci 64:2756–2763

    Article  Google Scholar 

  • Nie J, Boos WR, Kuang Z (2010) Observational evaluation of a convective quasi-equilibrium view of monsoons. J Climate 23:4416–4428

    Article  Google Scholar 

  • Noreen EW (1989) Computer-intensive methods for testing hypotheses: an introduction. Wiley, New York

    Google Scholar 

  • Prodhomme C et al (2014) Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290

    Article  Google Scholar 

  • Prodhomme C et al. (2016) Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate online.

  • Rai A, Saha SK (2017) Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2). Clim Dyn. doi:10.1007/s00382-017-3587-z

    Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Amer Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Richter I (2015) Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Clim Change 6:345–358

    Google Scholar 

  • Richter I, Xie S-P, Wittenberg AT, Masumoto Y (2012) Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim Dyn 38:985–1001

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J Roy Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical Anticyclones and Summer Monsoons. J Climate 14:3192–3211

    Article  Google Scholar 

  • Roeckner E et al. (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut fur Meteorologie, Hamburg, MPI-Report 349.

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA Transect. J Clim 26:6471–6505

    Article  Google Scholar 

  • Sabeerali CT, Rao SA, Dhakate AR, Salunke K, Goswami BN (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn 45:161–174

    Article  Google Scholar 

  • Saha S et al (2014) The NCEP climate forecast system version 2. J Climate 27:2185–2208

    Article  Google Scholar 

  • Samson G, Masson S, Durand F, Terray P, Berthet S, Jullien S (2016) Role of land surface albedo and horizontal resolution on the Indian Summer Monsoon biases in a coupled ocean-atmosphere tropical-channel model. Clim Dyn

  • Sandeep S, Ajayamohan RS (2014) Origin of the cold bias over the Arabian Sea in climate models. Sci Rep 4:6043

    Google Scholar 

  • Schaaf CB, Liu J, Gao F, Strahler AH (2011) Land remote sensing and global environmental change. L Rem Sens Glob Environ Chang 11:549–561

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migration and dynamics of the inter-tropical convergence zone. Nature 513:45–53

    Article  Google Scholar 

  • Shaw TA, Voigt A, Kang SM, Seo J (2015) Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings. Geophys Res Lett 42:9961–9969

    Article  Google Scholar 

  • Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252

    Article  Google Scholar 

  • Sperber KR et al (2013) The Asian summer monsoon: an inter-comparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Stephens GL et al (2010) Dreary state of precipitation in global models. J Geophys Res 115:D24211

    Article  Google Scholar 

  • Stephens GL, O’Brien D, Webster PJ, Pilewski P, Kato S, Li J-I (2015) The Albedo of Earth. Rev Geophys 53:141–163

    Article  Google Scholar 

  • Sud YC, Smith WE (1985) Influence of local land surface processes on the Indian monsoon: a numerical study. J Clim Appl Meteor 24:1015–1036

    Article  Google Scholar 

  • Swapna et al (2015) The IITM earth system model. Bull Amer Meteor Soc 96:1351–1367. doi:10.1175/BAMS-D-13-00276.1

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Terray P, Delecluse P, Labattu S, Terray L (2003) Sea surface temperature associations with the late Indian summer monsoon. Clim Dyn 21:593–618

    Article  Google Scholar 

  • Thackeray CW, Fletcher CG, Derksen C (2015) Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J Geophys Res 120:5831–5849

    Google Scholar 

  • Vamborg FSE, Brovkin V, Claussen M (2014) Background albedo dynamics improve simulated precipitation variability in the Sahel region. Earth Syst Dynam 5:89–101

    Article  Google Scholar 

  • Voigt A, Stevens B, Bader J, Mauritsen T (2014) Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J Climate 27:1029–1045

    Article  Google Scholar 

  • Wang S, Trishchenko AP, Khlopenkov KV, Davidson A (2006) Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J Geophys Res 111:D21108

    Article  Google Scholar 

  • Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205

    Article  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer-Verlag, p 870

  • Wild M et al (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429

    Article  Google Scholar 

  • Wu G et al (2012) Thermal Controls on the Asian Summer Monsoon. Scientific Rep 2:1–7

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yang F, Mitchell K, Hou Y-T, Dai Y, Zeng X, Wang Z, Liang X-Z (2008) Dependence of land surface albedo on solar zenith angle: observations and model parameterization. J Appl Meteo Clim 47:2963–2982

    Article  Google Scholar 

  • Yin et al (2004) Comparison of the GPCP and CMAP Merged Gauge–Satellite Monthly Precipitation Products for the Period 1979–2001. J of Hydrometeorology 5:1207–1222

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India, to conduct this research under the National Monsoon Mission (Grant #MM/SERP/CNRS/2013/INT-10/002, Contribution #MM/PASCAL/RP/08). We sincerely thank Prof. Ravi Nanjundiah, Director, Indian Institute of Tropical Meteorology (IITM, India) and Dr. R Krishnan, executive Director, Centre for Climate Change Research (at IITM, India) for all the support during this research study. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in the Supplementary Materials) for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Inter-comparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Computer resources from Indian Institute of Tropical Meteorology (India) and GENCI-IDRIS (France, Grants 2015, 2016, 2017–016895) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Terray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terray, P., Sooraj, K.P., Masson, S. et al. Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the-art coupled models: role of the background snow-free land albedo. Clim Dyn 50, 3413–3439 (2018). https://doi.org/10.1007/s00382-017-3812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3812-9

Keywords

Navigation