Skip to main content

Advertisement

Log in

Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992–2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run (“mother domain”) encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bovin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Anyah RO, Semazzi FHM (2004) Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperature. Theor Appl Climatol 79:55–69. doi:10.1007/s00704-004-0057-4

    Article  Google Scholar 

  • Anyah RO, Semazzi FH, Xie L (2006) Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon Weather Rev 134(12):3588–3609

    Article  Google Scholar 

  • Banda MC, Chisambo J, Sipawe RD, Mwakiyongo KR, Weyl OLF, Bay M (2001) Fisheries Research Unit, research plan: 2000 and 2001. Fish Bull 44:1–54. http://www.malawicichlids.com/fishbull_44_2001.pdf

    Google Scholar 

  • Bates GT, Giorgi F, Hostetler SW (1993) Toward the simulation of the effects of the Great Lakes on regional climate. Mon Weather Rev 121(5):1373–1387

    Article  Google Scholar 

  • Bates GT, Hostetler SW, Giorgi F (1995) Two-year simulation of the Great Lakes region with a coupled modeling system. Mon Weather Rev 123(5):1505–1522

    Article  Google Scholar 

  • Bonan GB (1995) Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim 8(11):2691–2704

    Article  Google Scholar 

  • Bootsma HA, Hecky RE (1993) Conservation of the African Great Lakes: a limnological perspective. Conserv Biol 7(3):644–656

    Article  Google Scholar 

  • Branchu P, Bergonzini L, Benedetti M, Ambroisi JP, Klerkx J (2005) Sensibilité à la pollution métallique de deux grands lacs africains (Tanganyika et Malawi). Revue des sciences de l’eau/J Water Sci 18:161–180

    Google Scholar 

  • Brown ET, Le Callonnec L, German CR (2000) Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: a diagnostic paleotracer for episodic changes in mixing depth. Geochim Cosmochim Acta 64(20):3515–3523

    Article  Google Scholar 

  • Chavula G, Brezonik P, Thenkabail P, Johnson T, Bauer M (2009) Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Phys Chem Earth 34(13):749–754

    Article  Google Scholar 

  • Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the Early 21st century. Int J Geophys 2012:1–19. doi:10.1155/2012/972.896

    Article  Google Scholar 

  • Diallo I, Sylla MB, Camara M, Gaye AT (2013) Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor Appl Climatol 113:351–362. doi:10.1007/s00704-012-0791-y

    Article  Google Scholar 

  • Diallo I, Bain CL, Gaye AT, Moufouma-Okia W, Niang C, Dieng MDB, Graham R (2014) Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model. Clim Dyn 43(3–4):575–594. doi:10.1007/s00382-014-2219-0

    Article  Google Scholar 

  • Diallo I, Giorgi F, Sukumaran S, Stordal F, Giuliani G (2015) Evaluation of RegCM4 driven by CAM4 over Southern Africa: mean climatology, interannual variability and daily extremes of wet season temperature and precipitation. Theor Appl Climatol 121(3–4):749–766. doi:10.1007/s00704-014-1260-6

    Article  Google Scholar 

  • Diallo I, Giorgi F, Deme A, Tall M, Mariotti L, Gaye AT (2016) Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim Dyn 47(12):3931–3954. doi:10.1007/s00382-016-3052-4

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Tech Rep, National Center for Atmospheric Research Tech Note NCAR.TN-387 + STR, NCAR, Boulder

  • Eccles DH (1974) An outline of the physical limnology of Lake Malawi. Limnol Oceanogr 19(5):730–742

    Article  Google Scholar 

  • Fotso-Nguemo TC, Vondou DA, Pokam WM, Djomou ZY, Diallo I, Haensler A, Tchotchou LA, Kamsu-Tamo PH, Gaye AT, Tchawoua C (2017) On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa. Clim Dyn. doi:10.1007/s00382-017-3547-7

    Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:1722–1733. doi:10.1175/1520-0469(1980)&a>2.0.CO;2

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim. doi:10.1175/2011JCLI4083.1

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates G (1993a) Development of a second generation regional climate model (RegCM2). I. Boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates G, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2). II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi:10.3354/cr01018

    Article  Google Scholar 

  • Grell G, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research Tech Note NCAR/TN-398 + STR, NCAR, Boulder

  • Guildford SJ, Taylor WD, Bootsma HA, Hendzel LL, Hecky RE, Barlow-Busch L (1999) Factors controlling pelagic algal abundance and composition in Lake Malawi/Nyasa. Water Quality Report, SADC/GEF Lake Malawi/Nyasa Biodiversity Conservation Project. (Ed. Bootsma HA, Hecky RE)

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations. Int J Climatol. doi:10.1002/joc.3711

    Google Scholar 

  • Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hostetler SW, Bates GT, Giorgi F (1993) Interactive coupling of a lake thermal model with a regional climate model. J Geophys Res 98(D3):5045–5057. doi:10.1029/92JD02843

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, Gavock B, Susskind J (2001) Global Precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420 + STR, NCAR, Boulder

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Li L, Diallo I, Xu CY, Stordal F (2015) Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. J Hydrol 528:1–16. doi:10.1016/j.jhydrol.2015.05.028

    Article  Google Scholar 

  • MacCallum SN, Merchant CJ (2011) ARC-Lake algorithm theoretical basis document ARC-Lake v1. 1, 19952009 [Dataset], The University of Edinburgh, School of GeoSciences/European Space Agency. http://hdl.handle.net/10283/88. Accessed 3 Nov 2016

  • MacCallum SN, Merchant CJ (2012) Surface water temperature observations of large lakes by optimal estimation. Can J Remote Sens 38(1):25–45

    Article  Google Scholar 

  • Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in 21st century CORDEX projections. Clim Change. doi:10.007/s10584-014-1097-0

  • Martynov A, Sushama L, Laprise R, Winger K, Dugas B (2012) Interactive lakes in the Canadian regional climate model, version 5: the role of lakes in the regional climate of North America. Tellus A. doi:10.3402/tellusa.v64i0.16226

    Google Scholar 

  • Moalafhi DB, Evans JP, Sharma A (2016) Influence of reanalysis datasets on dynamically downscaling the recent past. Clim Dyn. doi:10.1007/s00382-016-3378-y

  • N’Datchoh ET, Diallo I, Konare A, Silue S, Ogunjobi KO, Diedhiou A, Doumbia M (2017) Dust induced changes on the West African summer monsoon features. Int J Climatol. doi:10.1002/joc.5187

    Google Scholar 

  • Nicholls FJ, Toumi R (2014) On the lake effects of the Caspian Sea. Q J R Meteorol Soc 140(681):1399–1408

    Article  Google Scholar 

  • Notaro M, Holman K, Zarrin A, Fluck E, Vavrus S, Bennington V (2013) Influence of the Laurentian Great Lakes on regional climate. J Clim. doi:10.1175/JCLI-D-12-00140.1

    Google Scholar 

  • Nyamweya C, Desjardins C, Sigurdsson S, Tomasson T, Taabu-Munyaho A, Sitoki L, Stefansson G (2016) Simulation of lake victoria circulation patterns using the regional ocean modeling system (ROMS). PloS One 11(3):e0151272

    Article  Google Scholar 

  • Ogwang BA, Chen H, Li X, Gao C (2014) The influence of topography on East African October to December climate: sensitivity experiments with RegCM4. Adv Meteorol 2014:143917. doi:10.1155/2014/143917

    Article  Google Scholar 

  • Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Small EE, Sloan LC, Hosteller S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104(D6):6583–6602. doi:10.1029/98JD02348

    Article  Google Scholar 

  • Spigel RH, Coulter GW (1996) Comparison of hydrology and physical limnology of the East African great lakes: Tanganyika, Malawi, Victoria, Kivu and Turkana (with reference to some North American Great Lakes). In: Johnson TC, Odata E (eds) The limnology, climatology and paleoclimatology of the East African lake. Gordon and Breach, pp 103–139

  • Sun X, Xie L, Semazzi FHM, Liu B (2015) Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon Weather Rev 143:1179–1192. doi:10.1175/MWR-D-14-00049.1

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Stordal F (2012) Large-scale origins of rainfall and temperature bias in high-resolution simulations over southern Africa. Clim Res 52:193–211. doi:10.3354/cr01044

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over Africa: assessment of observation products and evaluation of a regional climate model simulation. Int J Climatol. doi:10.1002/joc.3551

    Google Scholar 

  • Tall M, Sylla MB, Diallo I, Pal JS, Faye A, Mbaye ML, Gaye AT (2017) Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor Appl Climatol 129(1–2):655. doi:10.1007/s00704-016-1805-y

    Article  Google Scholar 

  • Thiery W, Davin EL, Panitz HJ, Demuzere M, Lhermitte S, van Lipzig NPM (2015) The impact of the African Great Lakes on the regional climate. J Clim 28(10):4061–4085

    Article  Google Scholar 

  • Turuncoglu UU, Elguindi N, Giorgi F, Fournier N, Giuliani G (2013) Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin. Clim Dyn. doi:10.1007/s00382-012-1623-6

    Google Scholar 

  • Vavrus S, Notaro M, Zarrin A (2013) The role of ice cover in heavy lake-effect snowstorms over the Great Lakes Basin as simulated by RegCM4. Mon Weather Rev 141(1):148–165

    Article  Google Scholar 

  • Vollmer MK, Weiss RF, Bootsma HA (2002) Ventilation of Lake Malawi/Nyasa. In: Odada EO, Olago DO (eds) The East African great lakes: limnology, paleolimnology, and biodiversity. Kluwer, Dordrecht, pp 209–233

    Chapter  Google Scholar 

  • Williams K, Chamberlain J, Buontempo C, Bain CL (2015) Regional climate model performance in theLakeVictoria basin. Clim Dyn 44:1699–1713. doi:10.1007/s00382-014-2201-x

    Article  Google Scholar 

  • Woltering M, Johnson TC, Werne JP, Schouten S, Damsté JSS (2011) Late Pleistocene temperature history of Southeast Africa: a TEX 86 temperature record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol 303(1):93–102

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive comments and suggestions which helped to improve the quality of this manuscript. This research was funded under the project SOCOCA (Socioeconomic Consequences of Climate Change in sub-equatorial Africa, http://www.mn.uio.no/geo/english/research/projects/sococa/index.html), sponsored by the Research Council of Norway. This research was conducted while the first author was employed by the Abdus Salam International Centre for Theoretical Physics (ICTP). The final stage of the writing has been performed at the University of California, Los Angeles (UCLA). Support from the U.S. National Science Foundation grants AGS-1419526 is gratefully acknowledged. RegCM4 simulations outputs for this paper are archived by the Earth System Physics (ESP) section of the Abdus Salam ICTP and can be obtained by contacting the corresponding author (Dr. Ismaïla Diallo; idiallo@ucla.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaïla Diallo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 1626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diallo, I., Giorgi, F. & Stordal, F. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment. Clim Dyn 50, 3397–3411 (2018). https://doi.org/10.1007/s00382-017-3811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3811-x

Keywords

Navigation