Advertisement

Climate Dynamics

, Volume 50, Issue 7–8, pp 3031–3048 | Cite as

Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

  • Cuijiao Chu
  • Xiu-Qun Yang
  • Xuguang Sun
  • Dejian Yang
  • Yiquan Jiang
  • Tao Feng
  • Jin Liang
Article

Abstract

Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming’s contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.

Keywords

Tropical Pacific-Indian Ocean warming Interdecadal change Atmospheric circulation Precipitation Northern Hemisphere East Asia 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 41621005, 41505059, and 41330420.

References

  1. Alexander M, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  2. Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22):2169–2172. doi: 10.1029/2003GL018426 CrossRefGoogle Scholar
  3. Bader J, Latif M (2005) North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM. J Clim 18:5382–5389. doi: 10.1175/JCLI3577.1 CrossRefGoogle Scholar
  4. Chang EC, Yeh SW, Hong SY, Wu RG (2013) Sensitivity of summer precipitation to tropical sea surface temperatures over East Asia in the GRIMs GMP. Geophys Res Lett 40:1824–1831. doi: 10.1002/grl.50389 CrossRefGoogle Scholar
  5. Chu CJ, Yang XQ, Ren XJ, Zhou TJ (2013) Response of Northern Hemisphere storm tracks to Indian-western Pacific Ocean warming in atmospheric general circulation models. Clim Dyn 40:1057–1070. doi: 10.1007/s00382-013-1687-y CrossRefGoogle Scholar
  6. Deser C, Phillips AS (2006) Simulation of the 1976/1977 climate transition over the North Pacific: Sensitivity to tropical forcing. J Clim 19:6170–6180CrossRefGoogle Scholar
  7. Ding RQ, Ha KJ, Li JP (2010) Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Clim Dyn 34:1059–1071. doi: 10.1007/s00382-009-0555-2 CrossRefGoogle Scholar
  8. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093. doi: 10.1038/nature07080 CrossRefGoogle Scholar
  9. Fang JB, Yang XQ (2016) Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Clim Dyn 47:1989–2007. doi: 10.1007/s00382-015-2946-x CrossRefGoogle Scholar
  10. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  11. Han WQ, coauthors (2015) Indian Ocean decadal variability. Bull Am Meteor Soc 10:1679–1703Google Scholar
  12. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92CrossRefGoogle Scholar
  13. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23: 391–405. doi: 10.1007/s00382-004-0433-x CrossRefGoogle Scholar
  14. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  15. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389. doi: 10.1007/s00382-004-0432-y CrossRefGoogle Scholar
  16. Jin FF, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52(3):307–319CrossRefGoogle Scholar
  17. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The national center for atmospheric rearch community climate model: CCM3. J Clim 11:1131–1149CrossRefGoogle Scholar
  18. Kucharski F, Coauthors (2009) The CLIVAR C20C Project: Skill of simulating Indian monsoon rainfall on interannual to decadal timescale. Does GHG forcing play a role? Clim Dyn 33:615–627. doi: 10.1007/s00382-008-0462-y CrossRefGoogle Scholar
  19. Lau NC, Nath MJ (1994) A modeling study of the relative roles of the tropical and extropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7:1184–1207CrossRefGoogle Scholar
  20. Lau NC, Nath MJ (1996) The Role of the “atmospheric bridge” in linking Tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057CrossRefGoogle Scholar
  21. Li T, Zhang YS, Chang CP, Wang B (2001) On the relationship between Indian Ocean surface temperature and Asian summer monsoon. Geophys Res Lett 28(14):2843–2846CrossRefGoogle Scholar
  22. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995CrossRefGoogle Scholar
  23. Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. doi: 10.1029/2005RG000172 CrossRefGoogle Scholar
  24. Liu YM, Chan JCL, Mao JY, Wu GX (2002) The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon Weather Rev 130:2731–2744CrossRefGoogle Scholar
  25. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43CrossRefGoogle Scholar
  26. Meehl GA, Hu AX, Santer BD (2009) The Mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim 28:780–792CrossRefGoogle Scholar
  27. Mitchell T, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J Clim 25:693–712CrossRefGoogle Scholar
  28. Newman M, Coauthors (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427CrossRefGoogle Scholar
  29. Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the northern Hemisphere circulation. J Meteor Soc Jpn 67(3):375–383CrossRefGoogle Scholar
  30. Otterssen G, Benjamin P, Andrea B, Eric P, Philip CR, Nils CS (2001) Ecological effects of the North Atlantic oscillation. Oecologia 128:1–14CrossRefGoogle Scholar
  31. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  32. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  33. SanchezGomez E, Cassou C, Hodson DLR, Keenlyside N, Okumura Y, Zhou TJ (2008) North Atlantic weather regimes response to Indian-western Pacific Ocean warming: a multi-model study. Geophys Res Lett 35:L15706. doi: 10.1029/2008GL034345 CrossRefGoogle Scholar
  34. Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi: 10.1029/2007RG000245 CrossRefGoogle Scholar
  35. Si D, Hu ZZ, Kumar A, Jha B, Peng PT, Wang WQ, Han RQ (2015) Is the interdecadal variation of the summer rainfall over eastern China associated with SST? Clim Dyn 46:135–146. doi: 10.1007/s00382-015-2574-5 CrossRefGoogle Scholar
  36. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  37. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324CrossRefGoogle Scholar
  38. Uppala SM, Coauthros (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  39. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  40. Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi: 10.1029/2005GL022734 CrossRefGoogle Scholar
  41. Wang L, Chen W, Huang RH (2008) Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys Res Lett 35:L20702. doi: 10.1029/2008GL035287 CrossRefGoogle Scholar
  42. Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Ni˜no. J Clim 22:730–747CrossRefGoogle Scholar
  43. Xie SP, Kosaka Y, Du Y, Hu KM, Chowdary JS, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432. doi: 10.1007/s00376-015-5192-6 CrossRefGoogle Scholar
  44. Yang XQ, Xie Q, Zhu YM, Sun XG, Guo YJ (2005) Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns. Chin J Geophys 48(4):789–797CrossRefGoogle Scholar
  45. Yang JL, Liu QY, Xie SP, Liu ZY, Wu LX (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi: 10.1029/2006GL028571 Google Scholar
  46. Yang XQ, Zhu YM (2008) Interdecadal climate variability in China associated with the Pacific Decadal Oscillation, In: Fu C et al (eds) Regional climate studies of China. Springer, pp 97–117. doi: 10.1007/978-3-540-79242-0
  47. Yu L, Furevik T, Ottera, Gao YQ (2015) Modulation of the Pacific decadal oscillation on the summer precipitation over East China: a comparison of observations to 600-years control run of Bergen climate model. Clim Dyn 44:475–494. doi: 10.1007/s00382-014-2141-5 CrossRefGoogle Scholar
  48. Yuan Y, Li CY, Yang S (2014) Decadal anomalies of winter precipitation over southern China in association with El Nino and La Nina. J Meteor Res 28(1):091–110Google Scholar
  49. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability:1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  50. Zhao S, Zhou T, Yang X, Zhu Y, Tan Y, and Sun X (2011) Interdecadal change of the relationship between the tropical Indian Ocean dipole mode and the summer climate anomaly in China. Acta Meteor Sin 25(2):129–141. doi: 10.1007/s13351-011-0021-z CrossRefGoogle Scholar
  51. Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2009) Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim 22:2199–2215CrossRefGoogle Scholar
  52. Zhu YM, Yang XQ (2003a) Relationships between Pacific decadal oscillation and climate variabilities in China. Acta Meteorol Sin 61(6): 641–654 (in Chinese) Google Scholar
  53. Zhu YM, Yang XQ (2003b) Joint propagating patterns of SST and SLP anomalies in the North Pacific on bidecadal and pentadecadal timescales. Adv Atmos Sci 20(5): 694–710CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cuijiao Chu
    • 1
  • Xiu-Qun Yang
    • 1
  • Xuguang Sun
    • 1
  • Dejian Yang
    • 1
  • Yiquan Jiang
    • 1
  • Tao Feng
    • 1
  • Jin Liang
    • 1
  1. 1.CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric SciencesNanjing UniversityNanjingChina

Personalised recommendations