Skip to main content

Advertisement

Log in

Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Wintertime fronts climatology and the relationship between fronts and precipitation as depicted by a group of CMIP5 models are evaluated over the Southern Hemisphere (SH). The frontal activity is represented by an index that takes into account the vorticity, the gradient of temperature and the specific humidity at the 850 hPa level. ERA-Interim reanalysis and GPCP datasets are used to assess the performance of the models in the present climate. Overall, it is found that the models can reproduce adequately the main features of frontal activity and front frequency over the SH. The total precipitation is overestimated in most of the models, especially the maximum values over the mid latitudes. This overestimation could be related to the high values of precipitation frequency that are identified in some of the models evaluated. The relationship between fronts and precipitation has also been evaluated in terms of both frequency of frontal precipitation and percentage of precipitation due to fronts. In general terms, the models overestimate the proportion between frontal and total precipitation. In contrast with frequency of total precipitation, the frequency of frontal precipitation is well reproduced by the models, with the higher values located at the mid latitudes. The results suggest that models represent very well the dynamic forcing (fronts) and the frequency of frontal precipitation, though the amount of precipitation due to fronts is overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berry G, Reeder MJ, Jakob C (2011) A global climatology of atmospheric fronts. Geophys Res Lett 38:L04809. doi:10.1029/2010GL046451

    Google Scholar 

  • Bjerknes J, Solberg H (1922) Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys Publ 3:1–18

    Google Scholar 

  • Blázquez J, Solman SA (2016) Intraseasonal variability of wintertime frontal activity and its relationship with precipitation anomalies in the vicinity of South America. Clim Dyn 46:2327–2336. doi:10.1007/s00382-015-2704-0

    Article  Google Scholar 

  • Blázquez J, Solman SA (2017) Interannual variability of the frontal activity in the Southern Hemisphere: relationship with atmospheric circulation and precipitation over southern South America. Clim Dyn 48:2569–2579. doi:10.1007/s00382-016-3223-3.

    Article  Google Scholar 

  • Browning KA, Roberts NM (1994) Structure of a frontal cyclone. Q J R Meteorol Soc 120:1535–1557. doi:10.1002/qj.49712052006

    Google Scholar 

  • Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:L10805. doi:10.1029/2012GL051736

    Article  Google Scholar 

  • Catto JL, Nicholls N, Jakob C, Shelton KL (2014) Atmospheric fronts in current and future climates. Geophys Res Lett 41:7642–7650. doi:10.1002/2014GL061943

    Article  Google Scholar 

  • Catto JL, Jakob C, Nicholls N (2015) Can the CMIP5 models represent winter frontal precipitation? Geophys Res Lett 42:8596–8604. doi:10.1002/2015GL066015

    Article  Google Scholar 

  • Chang EKM, Guo Y, Xia X, Zheng M (2013) Storm-track activity in IPCC AR4/CMIP3 model simulations. J Clim 26:246–260. doi:10.1175/JCLI-D-11-00707.1

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Forster PM, Andrews T, Good P, Gregory JM, Jackson LS, Zelinka M (2013) Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J Geophys Res: Atmos 118(3):1139–1150. doi:10.1002/jgrd.50174

    Google Scholar 

  • Garreaud R, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. PALAEO 281(3):180–195. doi:10.1016/j.paleo.2007.10.032

    Article  Google Scholar 

  • Grainger S, Frederiksen CS (2014) Assessment of modes of interannual variability of southern hemisphere atmospheric circulation in CMIP5 models. J Clim 27:8107–8125. doi:10.1175/JCLI-D-14-00251.1

    Article  Google Scholar 

  • Grieger J, Leckebusch GC, Donat MG, Schuster M, Ulbrich U (2014) Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int J Climatol 34:3400–3416. doi:10.1002/joc.3917

    Article  Google Scholar 

  • Gulizia C, Camilloni I (2015) Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int J Climatol 35:583–595. doi:10.1002/joc.4005

    Article  Google Scholar 

  • Herold N, Alexander LV, Donat MG, Contractor S, Becker A (2016) How much does it rain overland? Geophys Res Lett 43:341–348. doi:10.1002/2015GL066615

    Article  Google Scholar 

  • Hewson TD (1998) Objective fronts. Meteorol Appl 5:37–65. doi:10.1017/S1350482798000553

    Article  Google Scholar 

  • Houze RA (2014) Cloud dynamics, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50.doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Koutroulis AG, Grillakis MG, Tsanis IK, Papadimitriou L (2016) Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim Dyn 47:1881–1898. doi:10.1007/s00382-015-2938-x

    Article  Google Scholar 

  • Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res Atmos 119:1695–1707. doi:10.1002/2013JD021152

    Article  Google Scholar 

  • Pendergrass A, Hartmann DL (2014) Two modes of change of the distribution of rain. J Clim 27:8357–8371. doi:10.1175/JCLI-D-14-00182.1

    Article  Google Scholar 

  • Simmonds I, Keay K, Bye JAT (2012) Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J Clim 25:1945–1962. doi:10.1175/JCLI-D-11-00100.1

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Sinclair M R (1995) A climatology of cyclogenesis for the Southern Hemisphere. Mon Weather Rev 123:1601–1619. doi:10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2

    Article  Google Scholar 

  • Solman SA, Orlanski I (2010) Subpolar high anomaly preconditioning precipitation over South America. J Atmos Sci 67:1526–1542. doi:10.1175/2009JAS3309.1

    Article  Google Scholar 

  • Solman SA, Orlanski I (2014) Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J Atmos Sci 71:539–552. doi:10.1175/JAS-D-13-0105.1

    Article  Google Scholar 

  • Solman SA, Orlanski I (2016) Climate change over the extratropical Southern Hemisphere: the tale from an ensemble of reanalysis datasets. J Clim 29:1673–1687. doi:10.1175/JCLI-D-15-0588.1

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934. doi:10.1175/JCLI3672.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was supported by the following grants: FONCyT-PICT-2012-1972, FONCyT-PICT-2014-2730 and UBACYT2014 No. 20020130200233BA. We wish to thank the anonymous reviewers whose comments allowed substantial improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefina Blázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blázquez, J., Solman, S.A. Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Clim Dyn 50, 2705–2717 (2018). https://doi.org/10.1007/s00382-017-3765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3765-z

Keywords

Navigation