Climate Dynamics

, Volume 50, Issue 5–6, pp 1533–1557 | Cite as

The response of the southwest Western Australian wave climate to Indian Ocean climate variability

  • Moritz Wandres
  • Charitha Pattiaratchi
  • Yasha Hetzel
  • E. M. S. Wijeratne


Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994–2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.


Wave climate Climate indices Subtropical ridge Southern annular mode SWAN wave model Southwest Australia 



The authors would like to thank Siobain Mulligan and Reena Lowry from the Government of Western Australia, Department of Transport for providing access to the wave buoy data. Furthermore, the authors wish to thank Brian Skjerven from the Pawsey Supercomputing Centre for his support. The authors like to acknowledge the European Centre for Medium-Range Weather Forecast (ECMWF) for granting access to the ERA-Interim dataset and Delft University of Technology for providing the SWAN source code. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. MW received the SIRF, UPAIS, and UWA Top-Up Scholarships. Finally, we thank three anonymous reviewers for their feedback and suggestions, which helped improving the manuscript to its final form.


  1. Allan JC, Komar PD (2000) Spatial and temporal variations in the wave climate of the North Pacific. In: Report to the Oregon Department of Land Conservation and Development. Corvallis, p 46Google Scholar
  2. Allan JC, Komar PD (2006) Climate controls on US west coast erosion processes. J Coast Res 223:511–529. doi: 10.2112/03-0108.1 CrossRefGoogle Scholar
  3. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern Annular Mode trends. J Clim 19:2896–2905. doi: 10.1175/JCLI3774.1 CrossRefGoogle Scholar
  4. Ardhuin F, Marié L, Rascle N et al (2009) Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39:2820–2838. doi: 10.1175/2009JPO4169.1 CrossRefGoogle Scholar
  5. Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter. J Clim 20:3147–3163. doi: 10.1175/JCLI4155.1 CrossRefGoogle Scholar
  6. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330. doi: 10.1029/2000GL011451 CrossRefGoogle Scholar
  7. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104:7649–7666CrossRefGoogle Scholar
  8. Bosserelle C, Pattiaratchi C, Haigh I (2012) Inter-annual variability and longer-term changes in the wave climate of Western Australia between 1970 and 2009. Ocean Dyn 62:63–76. doi: 10.1007/s10236-011-0487-3 CrossRefGoogle Scholar
  9. Bromirski PD (2005) Wave spectral energy variability in the northeast Pacific. J Geophys Res 110:C03005. doi: 10.1029/2004JC002398 CrossRefGoogle Scholar
  10. Bromirski PD, Cayan DR (2015) Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. J Geophys Res Ocean 120:3419–3443. doi: 10.1002/2014JC010440 CrossRefGoogle Scholar
  11. Bromirski PD, Cayan DR, Helly J, Wittmann P (2013) Wave power variability and trends across the North Pacific. J Geophys Res Ocean 118:6329–6348. doi: 10.1002/2013JC009189 CrossRefGoogle Scholar
  12. Cai W, Cowan T (2006) SAM and regional rainfall in IPCC AR4 models: can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys Res Lett 33:L24708. doi: 10.1029/2006GL028037 CrossRefGoogle Scholar
  13. Cai W, van Rensch P, Borlace S, Cowan T (2011a) Does the Southern Annular Mode contribute to the persistence of the multidecade-long drought over southwest Western Australia? Geophys Res Lett 38:1–5. doi: 10.1029/2011GL047943 CrossRefGoogle Scholar
  14. Cai W, van Rensch P, Cowan T (2011b) Influence of global-scale variability on the subtropical ridge over Southeast Australia. J Clim 24:6035–6053. doi: 10.1175/2011JCLI4149.1 CrossRefGoogle Scholar
  15. Cai W, Cowan T, Thatcher M (2012a) Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci Rep 2:702. doi: 10.1038/srep00702 CrossRefGoogle Scholar
  16. Cai W, Van Rensch P, Cowan T, Hendon HH (2012b) An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J Clim 25:6318–6329. doi: 10.1175/JCLI-D-11-00501.1 CrossRefGoogle Scholar
  17. Chen WY (1982) Assessment of southern oscillation sea-level pressure indices. Mon Weather Rev 110:800–807CrossRefGoogle Scholar
  18. Chiew FHS, Piechota TC, Dracup J a., McMahon T a (1998) El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204:138–149. doi: 10.1016/S0022-1694(97)00121-2 CrossRefGoogle Scholar
  19. Connolley WM (1997) Variability in annual mean circulation in southern high latitudes. Clim Dyn 13:745–756. doi: 10.1007/s003820050195 CrossRefGoogle Scholar
  20. Deacon E (1953) Climatic change in Australia since 1880. Aust J Phys 6:209. doi: 10.1071/PH530209 CrossRefGoogle Scholar
  21. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  22. Dolan R, Davis RE (1992) An intensity scale for Atlantic Coast Northeast Storms. J Coast Res 8:840–853Google Scholar
  23. Drosdowsky W (2005) The latitude of the subtropical ridge over Eastern Australia: the L index revisited. Int J Climatol 25:1291–1299. doi: 10.1002/joc.1196 CrossRefGoogle Scholar
  24. England MH, Ummenhofer CC, Santoso A (2006) Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J Clim 19:1948–1969. doi: 10.1175/JCLI3700.1 CrossRefGoogle Scholar
  25. Feng J, Li J, Li Y (2010) Is there a relationship between the SAM and Southwest Western Australian winter rainfall? J Clim 23:6082–6089. doi: 10.1175/2010JCLI3667.1 CrossRefGoogle Scholar
  26. Fogt RL, Perlwitz J, Monaghan AJ et al (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Clim 22:5346–5365. doi: 10.1175/2009JCLI2786.1 CrossRefGoogle Scholar
  27. Gallagher S, Tiron R, Dias F (2014) A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979–2012). Ocean Dyn. doi: 10.1007/s10236-014-0728-3 Google Scholar
  28. Gallagher S, Tiron R, Whelan E et al (2016) The nearshore wind and wave energy potential of Ireland: a high resolution assessment of availability and accessibility. Renew Energy 88:494–516. doi: 10.1016/j.renene.2015.11.010 CrossRefGoogle Scholar
  29. Gallop SL, Verspecht F, Pattiaratchi CB (2012) Sea breezes drive currents on the inner continental shelf off southwest Western Australia. Ocean Dyn 62:569–583. doi: 10.1007/s10236-011-0515-3 CrossRefGoogle Scholar
  30. Gallop SL, Bosserelle C, Haigh ID et al (2015) The impact of temperate reefs on 34 years of shoreline and vegetation line stability at Yanchep, southwestern Australia and implications for coastal setback. Mar Geol 369:224–232. doi: 10.1016/j.margeo.2015.09.001 CrossRefGoogle Scholar
  31. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33:L23704. doi: 10.1029/2006GL027721 CrossRefGoogle Scholar
  32. Gong D, Wang S (1999) Definition of Antarctic Oscillation index. Geophys Res Lett 26:459CrossRefGoogle Scholar
  33. Goodwin ID (2005) A mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño–Southern Oscillation since 1878 AD. Int J Climatol 25:1715–1729. doi: 10.1002/joc.1207 CrossRefGoogle Scholar
  34. Graham NE, Diaz HF (2001) Evidence for intensification of North Pacific winter cyclones since 1948. Bull Am Meteorol Soc 82:1869–1893. doi: 10.1175/1520-0477(2001)082<1869:EFIONP>2.3.CO;2 CrossRefGoogle Scholar
  35. Harr PA, Elsberry RL (1991) Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon Weather Rev 119:1448–1468. doi: 10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2 CrossRefGoogle Scholar
  36. Hemer MA (2010) Historical trends in Southern Ocean storminess: long-term variability of extreme wave heights at Cape Sorell, Tasmania. Geophys Res Lett 37:L18601. doi: 10.1029/2010GL044595 CrossRefGoogle Scholar
  37. Hemer MA, Griffin DA (2010) The wave energy resource along Australia’s Southern margin. J Renew Sustain Energy 2:43108. doi: 10.1063/1.3464753 CrossRefGoogle Scholar
  38. Hemer MA, Simmonds I, Keay K (2008) A classification of wave generation characteristics during large wave events on the Southern Australian margin. Cont Shelf Res 28:634–652. doi: 10.1016/j.csr.2007.12.004 CrossRefGoogle Scholar
  39. Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemisphere. Int J Climatol 30:475–491. doi: 10.1002/joc.1900 Google Scholar
  40. Hemer MA, Katzfey J, Trenham CE (2013a) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245. doi: 10.1016/j.ocemod.2012.09.008 CrossRefGoogle Scholar
  41. Hemer MA, McInnes KL, Ranasinghe R (2013b) Projections of climate change-driven variations in the offshore wave climate off south eastern Australia. Int J Climatol 33:1615–1632. doi: 10.1002/joc.3537 CrossRefGoogle Scholar
  42. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467. doi: 10.1175/JCLI4134.1 CrossRefGoogle Scholar
  43. Hughes MG, Heap AD (2010) National-scale wave energy resource assessment for Australia. Renew Energy 35:1783–1791. doi: 10.1016/j.renene.2009.11.001 CrossRefGoogle Scholar
  44. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996Google Scholar
  45. Karoly DJ (1989) Southern hemisphere circulation features associated with El Nino–Southern Oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  46. Kidson JW (1988) Indices of the Southern Hemisphere zonal wind. J Clim 1:183–194CrossRefGoogle Scholar
  47. Komen GJ, Cavaleri L, Donelan MA et al (1994) Dynamics of modelling of ocean waves. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Kwok R, Comiso JC (2002) Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys Res Lett 29:1705. doi: 10.1029/2002GL015415 Google Scholar
  49. Larsen SH, Nicholls N (2009) Southern Australian rainfall and the subtropical ridge: variations, interrelationships, and trends. Geophys Res Lett 36:L08708. doi: 10.1029/2009GL037786 CrossRefGoogle Scholar
  50. Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the Southern Annular Mode on the sea ice–ocean system. J Geophys Res Ocean 109:1–12. doi: 10.1029/2004JC002403 CrossRefGoogle Scholar
  51. Lemm AJ, Hegge BJ, Masselink G (1999) Offshore wave climate, Perth (Western Australia), 1994–96. Mar Freshw Res 50:95. doi: 10.1071/MF98081 CrossRefGoogle Scholar
  52. Li F, Roncevich L, Bicknell C, et al (2009) Storm waves and their temporal and directional distribution, Perth, 1994–2008. In: The Proceedings of the 5th Western Australian state Coastal Conference, pp 1–9Google Scholar
  53. Li F, Roncevich L, Bicknell C et al (2011) Interannual variability and trends of storminess, Perth, 1994–2008. J Coast Res 274:738–745. doi: 10.2112/JCOASTRES-D-09-00057.1 CrossRefGoogle Scholar
  54. Li F, Bicknell C, Lowry R, Li Y (2012) A comparison of extreme wave analysis methods with 1994–2010 offshore Perth dataset. Coast Eng 69:1–11. doi: 10.1016/j.coastaleng.2012.05.006 CrossRefGoogle Scholar
  55. Lopez H, Kirtman BP (2016) Investigating the seasonal predictability of significant wave height in the West Pacific and Indian Oceans. Geophys Res Lett 43:3451–3458. doi: 10.1002/2016GL068653 CrossRefGoogle Scholar
  56. Lovenduski NS (2005) Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys Res Lett 32:L11603. doi: 10.1029/2005GL022727 CrossRefGoogle Scholar
  57. Lucas C, Timbal B, Nguyen H (2013) The expanding tropics: a critical assessment of the observational and modeling studies. WIREs Clim Chang 5:89–112. doi: 10.1002/wcc.251 CrossRefGoogle Scholar
  58. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  59. Marshall GJ (2015) An observation-based Southern Hemisphere Annular Mode Index. Accessed 18 Aug 2015
  60. Masselink G, Pattiaratchi CB (2000) Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J Coast Res 17:173–187Google Scholar
  61. Masselink G, Pattiaratchi CB (2001) Seasonal changes in beach morphology along the sheltered coastline of Perth, Western Australia. Mar Geol 172:243–263. doi: 10.1016/S0025-3227(00)00128-6 CrossRefGoogle Scholar
  62. Meneghini B, Simmonds I, Smith IN (2007) Association between Australian rainfall and the Southern Annular Mode. Int J Climatol 27:109–121. doi: 10.1002/joc.1370 CrossRefGoogle Scholar
  63. Mortlock TR, Goodwin ID (2015) Directional wave climate and power variability along the Southeast Australian shelf. Cont Shelf Res 98:36–53. doi: 10.1016/j.csr.2015.02.007 CrossRefGoogle Scholar
  64. Mortlock TR, Goodwin ID (2016) Impacts of enhanced central Pacific ENSO on wave climate and headland-bay beach morphology. Cont Shelf Res. doi: 10.1016/j.csr.2016.03.007 Google Scholar
  65. NOAA/CPC (2016) SOI original data—Climate Prediction CenterGoogle Scholar
  66. NOAA/OOPC (2016) Dipole model index (DMI)Google Scholar
  67. O’Grady JG, McInnes KL, Colberg F et al (2015) Longshore wind, waves and currents: climate and climate projections at ninety mile beach, South-Eastern Australia. Int J Climatol 4093:4079–4093. doi: 10.1002/joc.4268 CrossRefGoogle Scholar
  68. Pattiaratchi CB, Buchan SJ (1991) Implications of long-term climate change for the Leeuwin Current. J R Soc West Aust 74:133–140Google Scholar
  69. Pattiaratchi C, Hegge B, Gould J, Eliot I (1997) Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont Shelf Res 17:1539–1560. doi: 10.1016/S0278-4343(97)00016-2 CrossRefGoogle Scholar
  70. Pattiaratchi CB, Gallop SL, Bosserelle C, Haigh I (2014) Coastal assessment study: Yanchep Lagoon. WannerooGoogle Scholar
  71. Peterson EW, Hennessey JP (1978) On the use of power laws for estimates of wind power potential. J Appl Meteorol 17:390–394CrossRefGoogle Scholar
  72. Pittock AB (1973) Global meridional interactions in stratosphere and troposphere. Q J R Meteorol Soc 99:424–437. doi: 10.1002/qj.49709942103 CrossRefGoogle Scholar
  73. Power S, Casey T, Folland C et al (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi: 10.1007/s003820050284 CrossRefGoogle Scholar
  74. Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model 70:174–188. doi: 10.1016/j.ocemod.2012.12.001 CrossRefGoogle Scholar
  75. Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Nino/Southern oscillation. Science 222:1195–1202. doi: 10.1126/science.222.4629.1195 CrossRefGoogle Scholar
  76. Raut BA, Jakob C, Reeder MJ (2014) Rainfall changes over Southwestern Australia and their relationship to the Southern Annular Mode and ENSO. J Clim 27:5801–5814. doi: 10.1175/JCLI-D-13-00773.1 CrossRefGoogle Scholar
  77. Reguero BG, Losada IJ, Méndez FJ (2015) A global wave power resource and its seasonal, interannual and long-term variability. Appl Energy 148:366–380. doi: 10.1016/j.apenergy.2015.03.114 CrossRefGoogle Scholar
  78. Rogers JC, van Loon H (1982) Spatial Variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon Weather Rev 110:1375–1392CrossRefGoogle Scholar
  79. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  80. Ropelewski CF, Jones PD (1987) An Extension of the Tahiti–Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165. doi: 10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2 CrossRefGoogle Scholar
  81. Saha S, Moorthi S, Pan HL et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi: 10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  82. Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  83. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. doi: 10.1038/43854 Google Scholar
  84. Searle P, Semeniuk V (1985) The natural sectors of the inner Rottnest shelf coast adjoining the Swan coastal plain. J R Soc West Aust 67:116–136Google Scholar
  85. Seymour RJ (2011) Evidence for changes to the Northeast Pacific wave climate. J Coast Res 27:194–201. doi: 10.2112/JCOASTRES-D-09-00149.1 CrossRefGoogle Scholar
  86. Smith IN, McIntosh P, Ansell TJ et al (2000) Southwest Western Australian winter rainfall and its association with Indian Ocean climate variability. Int J Climatol 20:1913–1930. doi: 10.1002/1097-0088(200012)20:15<1913::AID-JOC594>3.0.CO;2-J CrossRefGoogle Scholar
  87. Sterl A, Caires S (2005) Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int J Climatol 25:963–977. doi: 10.1002/joc.1175 CrossRefGoogle Scholar
  88. Suzuki R (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophys Res 109:C09001. doi: 10.1029/2003JC001974 CrossRefGoogle Scholar
  89. Telcik N, Pattiaratchi C (2014) Influence of northwest cloudbands on Southwest Australian rainfall. J Climatol 2014:1–11. doi: 10.1155/2014/671394 CrossRefGoogle Scholar
  90. The SWAN Team (2011) SWAN scientific and technical documentation. Delft University of Technology, The NetherlandsGoogle Scholar
  91. Thompson DWJ, Wallace JM (2000) Annular mode in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  92. Thresher RE (2002) Solar correlates of Southern Hemisphere mid-latitude climate variability. Int J Climatol 22:901–915. doi: 10.1002/joc.768 CrossRefGoogle Scholar
  93. Timbal B, Drosdowsky W (2013) The relationship between the decline of Southeastern Australian rainfall and the strengthening of the subtropical ridge. Int J Climatol 33:1021–1034. doi: 10.1002/joc.3492 CrossRefGoogle Scholar
  94. Verspecht F, Pattiaratchi C (2010) On the significance of wind event frequency for particulate resuspension and light attenuation in coastal waters. Cont Shelf Res 30:1971–1982. doi: 10.1016/j.csr.2010.09.008 CrossRefGoogle Scholar
  95. Wang XL, Swail VR (2001) Changes of extreme wave heights in northern Hemisphere Oceans and related atmospheric circulation regimes. J Clim 14:2204–2221. doi: 10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2 CrossRefGoogle Scholar
  96. Weller E, Feng M, Hendon H et al (2012) Interannual variations of wind regimes off the subtropical Western Australia coast during austral winter and spring. J Clim 25:5587–5599. doi: 10.1175/JCLI-D-11-00324.1 CrossRefGoogle Scholar
  97. Whiteway T (2009) Australian bathymetry and topography gridGoogle Scholar
  98. Williams AAJ, Stone RC (2009) An assessment of relationships between the Australian subtropical ridge, rainfall variability, and high-latitude circulation patterns. Int J Climatol 29:691–709. doi: 10.1002/joc.1732 CrossRefGoogle Scholar
  99. Willmott CJ (1984) On the evaluation of model performance in physical geography. In: Spatial statistics and models. Springer, Netherlands, pp 443–460. doi: 10.1007/978-94-017-3048-8_23
  100. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi: 10.1002/joc.2419 CrossRefGoogle Scholar
  101. Yamagami Y, Tozuka T (2014) Interdecadal changes of the Indian Ocean subtropical dipole mode. Clim Dyn 44:3057–3066. doi: 10.1007/s00382-014-2202-9 CrossRefGoogle Scholar
  102. Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Clim 19:931–950. doi: 10.1002/(SICI)1097-0088(199907)19 CrossRefGoogle Scholar
  103. Young IR, Zieger S, Babanin A V. (2011) Global trends in wind speed and wave height. Science 332:451–455. doi: 10.1126/science.1197219 CrossRefGoogle Scholar
  104. Zhang K, Douglas BC, Leatherman SP (2000) Twentieth-century storm activity along the US East Coast. J Clim 13:1748–1761. doi: 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Civil, Environmental and Mining Engineering and the UWA Oceans InstituteThe University of Western AustraliaCrawleyAustralia

Personalised recommendations