Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

Abstract

The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905. doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2

    Article  Google Scholar 

  2. Ayarzagüena B, Screen JA (2016) Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys Res Lett 43(6):2801–2809

    Article  Google Scholar 

  3. Ayrault F (1998) Environnement, structure et évolution des dépressions météorologiques: réalité climatologique et modèles types. Doctoral Dissertation

  4. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40(17):4734–4739. doi:10.1002/grl.50880

    Article  Google Scholar 

  5. Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26(18):7117–7135

    Article  Google Scholar 

  6. Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim 28(13):5254–5271. doi:10.1175/JCLI-D-14-00589.1

    Article  Google Scholar 

  7. Barnes EA, Dunn-Sigouin E, Masato G, Woollings T (2014) Exploring recent trends in Northern Hemisphere blocking. Geophys Res Lett 41(2):638–644. doi:10.1002/2013GL058745

    Article  Google Scholar 

  8. Blackport R, Kushner PJ (2016) The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J Clim 29(2):401–417

    Article  Google Scholar 

  9. Cattiaux J, Peings Y, Saint-Martin D, Trou-Kechout N, Vavrus SJ (2016) Sinuosity of midlatitude atmospheric flow in a warming world. Geophys Res Lett 43(15):8259–8268

    Article  Google Scholar 

  10. Cheng W, Chiang JC, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26(18):7187–7197. doi:10.1175/JCLI-D-12-00496.1

    Article  Google Scholar 

  11. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi:10.1038/ngeo2234

    Article  Google Scholar 

  12. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10(4–5):249–266

    Article  Google Scholar 

  13. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767. doi:10.1175/2009JCLI3053.1

    Article  Google Scholar 

  14. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351. doi:10.1175/JCLI4278.1

    Article  Google Scholar 

  15. Deser C, Tomas RA, Sun L (2015) The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J Clim 28(6):2168–2186. doi:10.1175/JCLI-D-14-00325.1

    Article  Google Scholar 

  16. Dethloff K, Rinke A, Benkel A, Køltzow M, Sokolova E, Kumar Saha S et al (2006) A dynamical link between the Arctic and the global climate system. Geophys Res Lett. doi:10.1029/2005GL025245

    Google Scholar 

  17. Flaounas E, Kelemen FD, Wernli H, Gaertner MA, Reale M, Sanchez-Gomez E et al (2016) Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim Dyn 1–18. doi:10.1007/s00382-016-3398-7

  18. Francis J, Skific N (2015) Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos Trans R Soc Lond A: Math, Phys Eng Sci 373(2045):20140170. doi:10.1098/rsta.2014.0170

    Article  Google Scholar 

  19. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophy Res Lett 39(6). doi:10.1029/2012GL051000

  20. Francis JA, Vavrus SJ (2015) Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett 10(1):14005

    Article  Google Scholar 

  21. Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Lett. doi:10.1029/2009GL037274

    Google Scholar 

  22. Gerdes R (2006) Atmospheric response to changes in Arctic sea ice thickness. Geophys Res Lett. doi:10.1029/2006GL027146

    Google Scholar 

  23. Graff LS, LaCasce JH (2012) Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J Clim 25(6):1854–1870

    Article  Google Scholar 

  24. Guo D, Gao Y, Bethke I, Gong D, Johannessen OM, Wang H (2014) Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor Appl Climatol 115(1–2):107–119

    Article  Google Scholar 

  25. Harvey BJ, Shaffrey LC, Woollings TJ (2014) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn 43(5–6):1171–1182

    Article  Google Scholar 

  26. Harvey BJ, Shaffrey LC, Woollings TJ (2015) Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim Dyn 45(9–10):2847–2860

    Article  Google Scholar 

  27. Hassanzadeh P, Kuang Z (2015) Blocking variability: Arctic Amplification versus Arctic Oscillation. Geophys Res Lett 42(20):8586–8595. doi:10.1002/2015GL065923

    Article  Google Scholar 

  28. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2

    Article  Google Scholar 

  29. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003). The North Atlanitc oscillation: climate significance and environmental impact. Geophys Monogr Ser 134:279

  30. Kay JE, Holland MM, Jahn A (2011) Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys Res Lett. doi:10.1029/2011GL048008

    Google Scholar 

  31. Latif M, Martin T, Park W (2013) Southern Ocean sector centennial climate variability and recent decadal trends. J Clim 26(19):7767–7782

    Article  Google Scholar 

  32. Lindzen RS, Farrell B (1980) A simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci 37(7):1648–1654. doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2

    Article  Google Scholar 

  33. Madec G (2008) NEMO ocean engine: Notes du Pole de Modélisation 27. Paris, Institut Pierre-Simon Laplace (IPSL)

  34. Martin JE, Vavrus SJ, Wang F, Francis JA (2015) Sinuosity as a measure of middle tropospheric waviness. Clim Dyn

  35. McGraw MC, Barnes EA (2016) Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM. J Clim 29(14):5223–5240

  36. Mélia DS (2002) A global coupled sea ice–ocean model. Ocean Model 4(2):137–172. doi:10.1016/S1463-5003(01)00015-4

    Article  Google Scholar 

  37. Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci 7(12):869–873. doi:10.1038/ngeo2277

    Article  Google Scholar 

  38. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549. doi:10.1016/0921-8181(95)00043-7

    Article  Google Scholar 

  39. Orsolini YJ, Senan R, Benestad RE, Melsom A (2012) Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Clim Dyn 38(11–12):2437–2448

    Article  Google Scholar 

  40. Peings Y, Magnusdottir G (2014) Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J Clim 27(1):244–264. doi:10.1175/JCLI-D-13-00272.1

    Article  Google Scholar 

  41. Perlwitz J, Hoerling M, Dole R (2015) Arctic tropospheric warming: causes and linkages to lower latitudes. J Clim 28(6):2154–2167. doi:10.1175/JCLI-D-14-00095.1

    Article  Google Scholar 

  42. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res: Atmos 115(D21). Consulté à l’adresse. doi:10.1029/2009JD013568/full

  43. Rahmstorf S, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5(5):475–480

  44. Rinke A, Dethloff K, Dorn W, Handorf D, Moore JC (2013) Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. J Geophys Res: Atmos 118(14):7698–7714

    Google Scholar 

  45. Sanchez-Gomez E, Somot S (2016) Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain. Clim Dyn 1-17. doi:10.1007/s00382-016-3394-y

  46. Scinocca JF, Reader MC, Plummer DA, Sigmond M, Kushner PJ, Shepherd TG, Ravishankara AR (2009) Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery. Geophy Res Lett. doi: 10.1029/2009GL041239/full

    Google Scholar 

  47. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim 26(4):1230–1248. doi:10.1175/JCLI-D-12-00063.1

    Article  Google Scholar 

  48. Screen JA, Deser C, Sun L (2015) Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull Am Meteorol Soc 96(9):1489–1503

    Article  Google Scholar 

  49. Semenov VA, Latif M (2015) Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ Res Lett 10(5):54020

    Article  Google Scholar 

  50. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77(1):85–96. doi:10.1016/j.gloplacha.2011.03.004

    Google Scholar 

  51. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Sutton R (2012) Past, present, and future changes in the Atlantic meridional overturning circulation. Bull Am Meteorol Soc 93(11):1663–1676. doi:10.1175/BAMS-D-11-00151.1

    Article  Google Scholar 

  52. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J et al (2014) Climate change 2013: the physical science basis.

  53. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012a) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett. doi:10.1029/2012GL052676

    Google Scholar 

  54. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012b) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110(3–4):1005–1027. doi:10.1007/s10584-011-0101-1

    Google Scholar 

  55. Suo L, Gao Y, Guo D, Liu J, Wang H, Johannessen OM (2016) Atmospheric response to the autumn sea-ice free Arctic and its detectability. Clim Dyn 46(7–8):2051–2066

    Article  Google Scholar 

  56. Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016

    Article  Google Scholar 

  57. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus A 42(3):343–365. doi:10.1034/j.1600-0870.1990.t01-2-00003.x

    Article  Google Scholar 

  58. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388. doi:10.5194/gmd-6-373-2013

    Article  Google Scholar 

  59. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214

    Article  Google Scholar 

  60. Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi:10.1007/s00382-011-1259-y

    Google Scholar 

  61. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett. doi:10.1029/2005GL023684

    Google Scholar 

  62. Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013) A multimodel assessment of future projections of north atlantic and european extratropical cyclones in the cmip5 climate models. J Clim 26(16):5846–5862. doi:10.1175/JCLI-D-12-00573.1

    Article  Google Scholar 

  63. Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci 112(15):4570–4575

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Laure Coquart and Marie-Pierre Moine for their help to handle the climate model. We also thank Clara Deser for hosting T. Oudar at NCAR (National Center for Atmospheric Research) in October 2015, as well as the CGD/CAS (Climate and Global Dynamics/Climate Analysis Section) team for their constructive comments and suggestions. The figures were produce with the NCAR Command Language Software (10.5065/D6WD3XH5). This study was funded by the MORDICUS Grant under contract ANR-13-SENV-0002-01 and by Météo France. Finally, we wish to thank the four anonymous reviewers for their useful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Oudar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3989 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oudar, T., Sanchez-Gomez, E., Chauvin, F. et al. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Clim Dyn 49, 3693–3713 (2017). https://doi.org/10.1007/s00382-017-3541-0

Download citation

Keywords

  • Arctic sea ice loss
  • Atmospheric circulation
  • Storm-track
  • Blocking